行业核心观点 - 2026年是AGI(通用人工智能)的“实干者”元年,其核心是具备自主规划、长时间运行和目标导向能力的“长程智能体”,标志着AI从“对话者”向“执行者”的范式转变 [1] - 长程智能体的核心价值在于为复杂任务提供高质量的“初稿”,其应用正从编码、Excel自动化等垂直领域向所有复杂任务流扩散 [1][5] - 智能体发展的第三个拐点已经到来,这得益于模型能力的增强与围绕模型构建的、有主见的“软件外壳”的共同进化 [2][11] 长程智能体的爆发与核心应用 - 长程智能体已开始真正发挥作用,其核心理念是让大语言模型在循环中自主决策,早期代表如AutoGPT [2] - 编码领域是长程智能体最快起飞和案例最多的应用场景 [2][5] - 其他杀手级应用场景包括:AI站点可靠性工程师、研究分析以及金融等领域中需要生成任务初稿或总结报告的工作 [5][6][7] - 在客户服务等场景,长程智能体可在后台运行,为转接的人工客服生成前因后果总结,提升效率 [7] 智能体架构:从框架到软件外壳 - 智能体架构正从通用的“框架”时代进入更有主见的“软件外壳”时代,后者是开箱即用、内置了预设规划工具等最佳实践的软件环境 [8][10][11] - 软件外壳的关键能力包括:上下文压缩、文件系统交互以及子智能体调度 [11][18] - 模型能力的提升与软件外壳工程设计的进步共同促成了当前突破,特别是推理模型的进步和一系列上下文工程原语的成熟 [11][12] - 在编码基准测试中,经过特定软件外壳优化的智能体性能显著超越原始模型,表明第三方开发者能在该层面挖掘巨大性能提升 [15][17] 编码智能体与通用智能体的演进 - 编码智能体可能是通用智能体的终极形态,因为“写代码”本身就是让计算机工作的极佳通用手段 [1][23] - 构建长程智能体的一个关键共识是必须赋予其文件系统访问权限,这有助于高效的上下文管理 [11][23] - 未来的竞争焦点将集中在围绕“让大语言模型循环运行”这一核心算法的上下文工程技巧上,例如记忆管理和上下文压缩的自动化 [22][23] 智能体开发与传统软件开发的差异 - 最大区别在于:智能体的逻辑部分存在于非确定性的黑盒模型中,而非全部写在可控代码里,因此必须通过实际运行来理解其行为 [25] - “追踪记录”成为智能体开发的“单一事实来源”和团队协作的核心支点,用于复现智能体内部每一步的上下文状态,这不同于传统软件仅在出错时查看日志 [25][26] - 智能体开发更具迭代性,因为其发布前的行为是未知的,需要通过在线测试和真实世界交互来不断调整 [27] - 现有软件公司因其拥有的数据和API,在接入智能体时具有巨大价值,但关于如何处理数据的“指令”部分可能是全新的 [29] 评估、记忆与自我改进 - 智能体的评估需要引入人类判断,其代理方式是使用“大语言模型作为评判者”,但关键在于确保其与人类判断对齐 [32][33] - 记忆功能是智能体形成竞争壁垒的关键,一个经过长时间磨合、内化了特定任务模式与背景记忆的智能体将极具价值 [36] - 智能体已具备通过反思追踪记录来自我改进的能力,体现在自动纠错、记忆更新等方面,实现了一种有人类在环的递归式自我改进 [33][34][35] 未来的交互与生产形态 - 理想的智能体交互是异步管理和同步协作的统一,用户需要能在两种模式间无缝切换 [37][38][40] - 未来的交互范式可能围绕“共享状态”展开,如同步查看和修改文件系统、云端文档中的同一份资料,Anthropic的Coworker是范例 [38] - 代码沙箱和命令行访问将是未来智能体的核心组件,文件系统访问权限被认为是所有智能体的标配 [41][42][44]
红杉对话 LangChain 创始人:2026 年 AI 告别对话框,步入 Long-Horizon Agents 元年
36氪·2026-01-28 09:01