深度|谷歌DeepMind CEO:中国在AI技术能否实现重大突破尚未验证,发明新东西比复制难一百倍
搜狐财经·2026-02-02 15:26

公司战略与组织架构 - Google DeepMind是Google所有AI研究的整合实体,汇集了Google Research、Google Brain和DeepMind,作为公司的“发动机室”负责所有AI技术的研发,然后扩散到各个产品中[41] - 公司内部进行了大规模重组,将所有AI团队整合到Demis Hassabis领导下的DeepMind,形成了高度统一的技术体系和紧密的迭代闭环,这被认为是2025年通过Gemini 3取得显著成效的关键[42][53] - 公司与三星等主要设备制造商建立了深度合作,Gemini已成为三星手机的核心AI和主要聊天机器人,并且也将成为苹果新版本Siri的核心引擎,这为技术提供了巨大的部署平台[43][52] 技术进展与产品竞争力 - Gemini系列模型表现强劲,最新版本Gemini 3让公司重新回到了AI排行榜的前列,被认为几乎可以与ChatGPT平起平坐,甚至在某些方面表现更好[3][30] - 公司认为实现AGI(通用人工智能)还需要5到10年时间,并且需要一两项重大的创新,而不仅仅是对现有理念(如Scaling Laws)的规模化提升[6][10] - 当前AI系统(如LLMs)的智能是碎片化的,缺乏持续学习、在线获取新知识和真正创造原创内容的能力,要实现AGI需要发展“世界模型”以理解物理规律和因果关系[7][8] - 公司正在开发名为Genie的交互式模型以及先进的视频模型,这些被视为早期“胚胎”世界模型,是迈向AGI所需的其他关键技术和能力[9][10] 行业竞争格局 - AI领域的竞争环境被描述为科技行业有史以来最激烈的,几乎所有最有能力的参与者和大型科技公司都已入场[28] - 中国在AI领域的进展迅速,其模型(如DeepSeek、阿里巴巴的模型)与美国和西方的前沿模型相比可能只落后几个月,但在实现真正的原创性突破方面尚未得到验证[35][36][37] - 行业部分领域可能存在估值泡沫,特别是私募市场中一些几乎没有产品或业务的项目筹集了数十亿美元资金,但从长远看不可持续[32] - 拥有强大资产负债表和稳定现金流的大型科技公司(如Google、Microsoft、Meta)在激烈的竞争中处于更有利的位置,能够调整方向并持续投入[40][53] 研发重点与未来展望 - 公司长期致力于将AI作为科学的终极工具,其AlphaFold项目解决了存在50年的蛋白质折叠难题,被超过300万研究人员使用,是AI应用于科学的最佳案例[4][48] - 公司正在多个科学领域推进类似AlphaFold的变革性项目,涵盖材料科学、物理学、数学以及天气预测等,有望开启科学发现的新黄金时代[48] - 预计2026年AI领域的重要进展包括:能够自主执行任务的智能体系统开始变得可靠并真正发挥作用;机器人领域将出现有趣进展;设备上的AI助手将在现实世界中发挥作用;世界模型将得到进一步推进[49] - AI被视为解决社会重大挑战(如气候变化、疾病、能源问题)的关键工具,同时其自身的发展也是一项需要谨慎管理的挑战[11][17] 基础设施与算力 - 公司除了使用GPU,还拥有自研的TPU芯片,通常用于内部训练性能最强的模型,而GPU则用于探索新的架构或应用(如AlphaFold)[11][48] - 算力和能源是AI发展的关键瓶颈,AI本身也能帮助提高基础设施效率、改进材料设计(如更高效的太阳能材料)甚至推动核聚变等突破性技术发展以解决能源问题[11] - 通过模型蒸馏等技术创新,AI系统的效率每年以约10倍的速度提升,推动每瓦特计算性能大幅增长[12]

深度|谷歌DeepMind CEO:中国在AI技术能否实现重大突破尚未验证,发明新东西比复制难一百倍 - Reportify