2025年大模型技术进展与2026年展望 - 2025年全球大模型在推理、编程、Agentic以及多模态等能力方向取得明显进步,但模型通用能力在稳定性、幻觉率等方面仍存在短板 [1] - 展望2026年,大模型在强化学习、模型记忆、上下文工程等方面将取得更多突破,并向实现AGI长期目标更进一步 [1] 2026年模型架构与训练范式演进 - 预计2026年预训练Scaling-Law将重现,旗舰模型参数量将更上一个台阶 [1] - 模型架构方面,基于Transformer的架构延续,平衡性能与效率的MoE成为共识,不同注意力机制路线仍在优化与切换 [1] - 训练范式方面,预训练阶段将通过Scaling-Law、高质量数据和强化学习共同提高模型能力 [1] - 随着英伟达GB系列芯片成熟及推广,模型将基于更高性能的万卡集群在预训练阶段重现Scaling-Law,模型参数量和智能上限都将进一步提升 [1] 强化学习的重要性提升 - 强化学习的引入提高了模型的智能上限,让模型可以更有逻辑、更符合人类偏好进行思考和推理 [2] - 强化学习的本质是“自我生成数据+多轮迭代”,关键在于大规模算力与高质量数据 [2] - 海外OpenAI、Gemini等模型厂商以及国内DeepSeek、阿里千问等均重视强化学习 [2] - 预计2026年海内外模型厂商强化学习占比将进一步提升 [2] 持续学习、模型记忆与世界模型的新突破 - 持续学习和模型记忆旨在解决大模型的“灾难性遗忘”问题,让模型具备选择性记忆机制 [3] - Google提出的Titans、MIRAS、Nested Learning等算法和架构核心是让模型可以根据任务的时间跨度和重要性动态调整学习和记忆方式,实现持续学习甚至终身学习 [3] - 聚焦理解物理世界因果规律的世界模型在Genie 3和Marble等不同模型路径的探索下具备突破机遇 [3]
中金:2026年大模型将取得更多突破 向实现AGI长期目标更进一步
智通财经·2026-02-05 09:39