量化模型与构建方式 1 景气动量模型 1) 模型名称:景气动量模型 2) 模型构建思路:自上而下行业轮动模型,基于行业盈利能力g和盈利能力边际变化Δg构建,从宏观、中观、微观三个视角对行业Δg开展建模[2] 3) 模型具体构建过程: - 宏观视角:将增长、通胀等宏观因子与行业整体ROE变化、估值变化映射,构建宏观戴维斯双击因子 - 中观视角:用产业链数据对行业财务状况进行Nowcast,计算中观景气度因子 - 微观视角:使用卖方分析师一致预期数据补充财报数据,计算微观景气度因子 - 加权组合三个视角的因子得到景气动量因子[16] 4) 模型评价:表现对市场风格依赖度高,尤其与成长因子显著正相关,是一个名副其实的Smart Beta[2][23] 2 遗传规划模型 1) 模型名称:遗传规划模型 2) 模型构建思路:自下而上行业轮动模型,采用"生物育种"原理直接挖掘行业量价、估值等数据[3] 3) 模型具体构建过程: - 将单目标遗传规划改造为双目标遗传规划,同时评价因子分组单调性和多头组表现 - 使用NSGA-II算法挖掘兼具分组表现单调、多头表现优秀的因子 - 采用贪心策略和方差膨胀系数合成行业得分[18] - 最新一期权重最高的因子计算过程: 1) 计算60日和30日超额收益变量A和B 2) 对B进行zscore标准化提取特定日期集合T 3) 计算T中A之和变量C 4) 计算标准化收盘价的自然指数变量D 5) 计算C和D的55日协方差[35] 4) 模型评价:对市场风格依赖度低,超额收益来自对行业机会的把握[3][32] 模型的回测效果 1 景气动量模型 1) 回测区间:20160430-20250131 2) 年化收益:9.61% 3) 年化波动:22.51% 4) 夏普比率:0.43 5) 最大回撤:-44.84% 6) 卡玛比率:0.21[25] 7) BARRA因子暴露:Growth(0.32)[25] 2 遗传规划模型 1) 回测区间:20220930-20250214 2) 年化收益:32.57% 3) 年化波动:18.17% 4) 夏普比率:1.79 5) 最大回撤:-19.63% 6) 卡玛比率:1.66[34] 7) 年化超额收益:28%[3] 量化因子与构建方式 1 宏观戴维斯双击因子 1) 因子构建思路:基于宏观因子与行业ROE变化、估值变化的映射关系构建[16] 2 中观景气度因子 1) 因子构建思路:用产业链数据对行业财务状况进行Nowcast[16] 3 微观景气度因子 1) 因子构建思路:使用卖方分析师一致预期数据补充财报数据[16] 因子的回测效果 1 最新一期遗传规划因子 1) 训练集IC:0.042 2) 训练集NDCG@5:0.362 3) 因子权重:40.7%[35]
春季量化观点:遗传规划超额屡创新高,积极把握股市结构性机会-20250319
华泰证券·2025-02-20 15:26