根据提供的研报内容,以下是量化模型与因子的详细总结: 量化模型与构建方式 1. 鑫选ETF绝对收益策略 - 模型构建思路:通过"抽屉法"在场内权益ETF池中进行测试,目标是跑出绝对收益和相对A股权益的长周期相对收益[11] - 具体构建过程: 1. 筛选鑫选ETF池中的标的(如黄金ETF、食品饮料ETF等) 2. 采用技术面量化方法进行组合优化 3. 动态调整持仓权重(各标的权重10%)[12] - 模型评价:样本外表现优异,风险收益比突出 2. 全天候多资产多策略ETF风险平价策略 - 模型构建思路:结合行业轮动、风格轮动等权益策略,使用风险平价方法分散资产和策略风险[17] - 具体构建过程: 1. 配置多资产类别(商品/美股/国内权益/债券) 2. 采用风险贡献均衡的权重分配方法 3. 具体持仓包括国债ETF(21.05%)、黄金ETF(9.12%)等[18] 3. 中美核心资产组合 - 模型构建思路:纳入白酒、红利、黄金、纳指四种强趋势标的,结合RSRS择时策略[21] - 具体构建过程: 1. 对每类资产应用RSRS趋势判断 2. 根据技术面反转信号调整仓位 3. 当前持仓为中证红利ETF和黄金ETF 4. 高景气/红利轮动策略 - 模型构建思路:构建高景气成长与红利策略的轮动模型[24] - 具体构建过程: 1. 信号为高景气时配置创业板ETF和科创50ETF(各50%) 2. 信号为红利时配置红利低波ETF与央企红利50ETF 3. 2024年2月后调整红利组合结构 5. 双债LOF增强策略 - 模型构建思路:通过波动率倒数归一化方法提升债券配置权重[27] - 具体构建过程: 1. 将标的分为双债LOF与其他三类资产 2. 计算各组收益率波动率 3. 按波动率倒数分配权重 6. 结构化风险平价(QDII) - 模型构建思路:以国内债券ETF为主,QDII产品增强收益[30] - 具体构建过程: 1. 配置QDII权益(纳指ETF等)、黄金、国内红利ETF 2. 采用风险平价方法优化组合 模型的回测效果 | 策略名称 | 总收益率 | 年化收益率 | 最大回撤 | 波动率 | 夏普比率 | |---------|---------|-----------|---------|--------|----------| | 鑫选技术面量化策略 | 33.49% | 24.14% | -6.30% | 17.58% | 1.20 | [33] | 高景气红利轮动策略 | 48.99% | 34.78% | -22.04% | 34.79% | 0.96 | [33] | 中美核心资产组合 | 59.80% | 42.03% | -10.86% | 17.16% | 2.02 | [33] | 双债LOF增强 | 9.08% | 6.73% | -2.26% | 3.41% | 1.34 | [33] | 结构化风险平价(QDII) | 23.59% | 17.18% | -2.38% | 4.92% | 2.84 | [33] | 全天候多资产策略 | 19.69% | 14.40% | -3.62% | 4.48% | 2.58 | [15][33] 量化因子与构建方式 1. 红利因子 - 构建思路:通过股息率和低波动特征筛选标的[24] - 具体构建: 1. 计算标的股息率() 2. 结合波动率指标筛选 3. 应用于红利低波ETF等产品 2. 质量因子 - 构建思路:筛选自由现金流稳定的标的[24] - 具体构建: 1. 计算企业自由现金流() 2. 标准化处理后加权 3. 趋势因子(RSRS) - 构建思路:捕捉资产价格趋势[21] - 具体构建: 1. 计算标的RSRS斜率 2. 设定阈值触发交易信号 因子的回测效果 | 因子类型 | 代表ETF | 年化超额收益 | IR | |---------|--------|-------------|----| | 红利因子 | 红利低波ETF | 2.31% | 0.88 | [59] | 质量因子 | 自由现金流ETF | 1.67% | 0.21 | [48] | 趋势因子 | 黄金ETF | 25.74% | 3.86 | [59] 注:所有策略测试结果均为2024年初至今数据[33],因子表现取自周涨幅TOP35ETF数据[59]
华鑫量化全天候刷新历史新高
华鑫证券·2025-05-27 15:34