量化模型与构建方式 1. 模型名称:赔率+胜率策略 - 模型构建思路:结合各资产的赔率与胜率策略的风险预算,构建综合配置策略[3] - 模型具体构建过程: 1. 赔率增强型策略:根据资产赔率指标(如A股AIAE指标、债券赔率指标),在目标波动率约束下超配高赔率资产,低配低赔率资产[38] 2. 胜率增强型策略:基于货币、信用、增长、通胀和海外五因子构建宏观胜率评分卡,分配风险预算[41] 3. 综合策略:将赔率策略和胜率策略的风险预算简单相加,生成最终配置权重[44] - 模型评价:综合策略在历史回测中表现稳健,兼顾赔率与胜率的动态平衡 2. 模型名称:行业轮动策略 - 模型构建思路:基于行业景气度、趋势和拥挤度三维框架进行行业配置[33] - 模型具体构建过程: 1. 趋势指标:行业过去12个月信息比率(IR)[33] 2. 拥挤度指标:行业换手率比率、波动率比率和beta比率[33] 3. 景气度判断:通过基本面数据划分高/低景气行业(实心/空心气泡表示)[36] 4. 综合评分:结合三维指标生成行业配置建议(如银行、农林牧渔等)[37] 3. 模型名称:美联储流动性指数模型 - 模型构建思路:从数量维度和价格维度解构美联储流动性[18] - 模型具体构建过程: 1. 包含净流动性、联储信用支持、预期引导、市场隐含和公告意外等子指标[17] 2. 综合加权生成流动性指数,用于判断美股配置价值[18] --- 量化因子与构建方式 1. 因子名称:AIAE指标(A股估值赔率因子) - 因子构建思路:衡量A股相对实体债务的估值吸引力[10] - 因子具体构建过程: 截至5月底该指标为16%,位于2010年以来35%分位数[10] 2. 因子名称:质量因子(EPS稳定性等) - 因子构建思路:综合赔率、趋势和拥挤度三标尺评估质量风格[19] - 因子具体构建过程: 1. 赔率:1.3倍标准差(高赔率) 2. 趋势:-0.3倍标准差(中等趋势) 3. 拥挤度:-0.8倍标准差(低拥挤)[19] - 因子评价:当前上升空间较大,建议长期关注[32] 3. 因子名称:成长因子 - 因子构建思路:通过估值、趋势和拥挤度评估成长风格[21] - 因子具体构建过程: 1. 赔率:-1.9倍标准差(低赔率) 2. 趋势:0.4倍标准差(中等趋势) 3. 拥挤度:0.3倍标准差(中等拥挤)[21] - 因子评价:整体配置价值较低[32] 4. 因子名称:小盘因子 - 因子构建思路:横截面分析小盘风格的风险收益特征[26] - 因子具体构建过程: 1. 赔率:-0.3倍标准差(中性) 2. 趋势:0.4倍标准差(中高水平) 3. 拥挤度:0.5倍标准差(中高水平)[26] --- 模型的回测效果 1. 赔率+胜率策略 - 2011年以来年化收益6.9%,最大回撤2.8%,夏普比率3.04[46] - 2014年以来年化收益7.6%,最大回撤2.6%[46] - 当前配置:泛权益类11.0%、黄金2.4%、债券86.6%[44] 2. 行业轮动策略 - 2011年以来年化超额收益12.3%,信息比率(IR)1.13[34] - 2019年以来年化超额收益9.5%,最大回撤12.3%[34] 3. 赔率增强型策略 - 2011年以来年化收益6.8%,最大回撤3.0%[40] --- 因子的回测效果 1. 质量因子 - 综合得分2.4(三标尺加权),超额收益稳定性较高[19] 2. 成长因子 - 综合得分-1.6,近期趋势和赔率同步下滑[21] 3. 小盘因子 - 综合得分0,拥挤度持续处于中高风险区间[26]
量化点评报告:六月配置建议:超配A股价值风格
国盛证券·2025-06-03 19:10