Workflow
行业轮动周报:指数创下年内新高但与题材炒作存在较大割裂,银行ETF获大幅净流入-20250630
中邮证券·2025-06-30 19:04

量化模型与构建方式 1. 模型名称:扩散指数行业轮动模型 - 模型构建思路:基于价格动量原理,通过行业扩散指数捕捉行业趋势[28] - 模型具体构建过程: 1. 计算中信一级行业的扩散指数,反映行业价格趋势强度 2. 选择扩散指数排名靠前的行业作为配置标的 3. 每月进行行业轮动调整[31] - 模型评价:在趋势性行情中表现优异,但在市场反转时可能失效[37] 2. 模型名称:GRU因子行业轮动模型 - 模型构建思路:基于GRU深度学习网络,利用分钟频量价数据生成行业因子[34] - 模型具体构建过程: 1. 使用GRU网络处理高频量价数据 2. 输出行业因子得分,反映行业短期动量 3. 每周进行行业轮动调整[36] - 模型评价:擅长捕捉短期交易机会,但对政策变化不敏感[38] 模型的回测效果 1. 扩散指数行业轮动模型 - 2025年以来超额收益:0.37%[26] - 6月以来超额收益:4.59%[31] - 本周超额收益:2.48%[31] 2. GRU因子行业轮动模型 - 2025年以来超额收益:-4.76%[34] - 6月以来超额收益:-0.55%[36] - 本周超额收益:-0.82%[36] 量化因子与构建方式 1. 因子名称:行业扩散指数 - 因子构建思路:通过价格动量衡量行业趋势强度[28] - 因子具体构建过程: 1. 计算各行业价格序列的扩散指标 2. 标准化处理得到0-1区间的扩散指数[29] 2. 因子名称:GRU行业因子 - 因子构建思路:利用深度学习提取量价特征[34] - 因子具体构建过程: 1. GRU网络处理分钟级量价数据 2. 输出行业因子得分,数值范围无固定上下限[35] 因子的回测效果 1. 行业扩散指数 - 当前最高值:非银行金融(1.0)、综合金融(1.0)[28] - 当前最低值:煤炭(0.214)[29] - 周环比最大提升:食品饮料(+0.453)[30] 2. GRU行业因子 - 当前最高值:纺织服装(3.7)[34] - 当前最低值:汽车(-16.31)[34] - 周环比最大提升:纺织服装[34]