量化模型与构建方式 1. 模型名称:三维择时框架 - 模型构建思路:基于分歧度、流动性、景气度三个维度构建市场择时模型[7] - 模型具体构建过程: 1. 分歧度指数:衡量市场观点离散程度,下行时预示反转机会[12] 2. 流动性指数:监测资金面变化,上行时支持市场上涨[21] 3. 景气度指数2.0:综合宏观与行业数据反映经济动能,上行时市场表现更优[25] 4. 当三维指标均向好时(分歧度↓、流动性↑、景气度↑),模型给出满仓信号[7] 2. 模型名称:资金流共振策略 - 模型构建思路:结合融资融券与大单资金流,筛选两类资金共同看好的行业[37] - 模型具体构建过程: 1. 行业融资融券因子: 经Barra市值中性化后取50日均值的两周环比变化率[37] 2. 行业主动大单因子: 对行业最近一年成交量时序中性化后的净流入排序,取10日均值[37] 3. 策略规则:在主动大单因子头部行业中剔除融资融券因子多头端行业[37] - 模型评价:相比北向-大单策略回撤更小,2018年以来年化超额13.5%,IR=1.7[37] 3. 模型名称:研报覆盖度调整的指数增强模型 - 模型构建思路:根据个股研报覆盖度分域选择差异化因子增强[47] - 模型具体构建过程: 1. 高覆盖度域:侧重基本面因子(如ROE、营收增速) 2. 低覆盖度域:侧重量价因子(如动量、波动率)[47] 3. 组合优化时控制行业偏离与跟踪误差 --- 量化因子与构建方式 1. 因子名称:成长因子组 - 因子构建思路:捕捉企业盈利与收入增长动能[43] - 因子具体构建过程: 1. 一致预测修正因子: [44] 2. ROE同比变化: [44] 3. 单季度EPS同比增速[44] 4. 研发投入占比: [44] 2. 因子名称:资金流因子组 - 因子构建思路:量化资金流向对行业选择的预测能力[31] - 因子具体构建过程: 1. 两融资金流因子:行业融资净买入-融券净卖出经市值中性化[37] 2. 大单资金流因子:行业净流入金额在过去一年成交量分位数[37] --- 模型的回测效果 1. 三维择时框架 - 历史满仓期年化收益:18.2%(vs 沪深300年化9.8%)[16] - 最大回撤:22.4%(vs 基准28.6%)[16] 2. 资金流共振策略 - 2018-2025年化超额收益:13.5%[37] - 信息比率(IR):1.7[37] - 上周超额收益:-0.3%(行业等权基准)[37] 3. 指数增强组合(2025年数据) | 组合类型 | 上周超额 | 本月超额 | 本年超额 | 年化超额收益 | |----------------|----------|----------|----------|--------------| | 沪深300增强 | 0.98% | 1.70% | 5.02% | 10.89% | | 中证500增强 | 0.49% | 1.53% | 3.53% | 12.81% | | 中证1000增强 | 0.10% | 1.58% | 4.40% | 13.61% | [48] --- 因子的回测效果 1. 成长因子组(近一周多头超额) | 因子名称 | 超额收益 | 主要逻辑 | |------------------------|----------|--------------------------| | 研发总资产占比 | 1.84% | 创新投入驱动长期增长 | | 一致预测营收修正 | 1.31% | 分析师预期上调信号 | | ROE同比变化 | 1.30% | 盈利能力改善 | [44] 2. 分市值表现(沪深300内) | 因子名称 | 多头超额 | |------------------------|----------| | 固定资产/股东权益 | 3.30% | | SUE1(净利润意外) | 4.09% | | PEG | 3.82% | [46] 3. 资金流因子(行业层面) - 医药行业:大单净流入分位数76% + 两融净流入分位数53%[39] - 通信行业:大单分位数76% + 两融分位数23%[39]
沪深300站稳4000点
民生证券·2025-07-20 19:41