Workflow
行业轮动周报:ETF资金持续净流出医药,雅下水电站成短线情绪突破口-20250728
中邮证券·2025-07-28 14:19

根据提供的证券研究报告内容,以下是量化模型与因子的详细总结: 量化模型与构建方式 1. 扩散指数行业轮动模型 - 模型构建思路:基于价格动量原理,通过跟踪行业扩散指数捕捉行业趋势[24] - 具体构建过程: 1. 计算各中信一级行业的扩散指数,数值范围0-1,反映行业趋势强度 2. 每周跟踪指数排名,选择扩散指数最高的6个行业作为配置标的[25] 3. 指数计算公式: DIi,t=Rank(EMA(Pi,t,n))NDI_{i,t} = \frac{Rank(EMA(P_{i,t}, n))}{N} 其中Pi,tP_{i,t}为行业i在t时刻的价格,n为平滑周期,N为行业总数[26] - 模型评价:在趋势行情中表现优异,但反转行情易失效[24] 2. GRU因子行业轮动模型 - 模型构建思路:基于GRU神经网络处理分钟频量价数据,生成行业因子[31] - 具体构建过程: 1. 输入层:行业分钟级成交价、成交量、买卖盘数据 2. 隐藏层:3层GRU网络结构,每层128个神经元 3. 输出层:生成30维行业因子向量,数值越大表示看涨概率越高[32] 4. 每周选择因子排名前6的行业配置[34] - 模型评价:短周期预测能力强,但对政策变化敏感[37] 模型的回测效果 1. 扩散指数模型 - 2025年累计超额收益:-0.45%[23] - 周度超额收益:-1.78%(2025/7/25当周)[28] - 月度超额收益:-3.47%(2025/7月)[28] 2. GRU因子模型 - 2025年累计超额收益:-4.25%[31] - 周度超额收益:1.61%(2025/7/25当周)[35] - 月度超额收益:1.34%(2025/7月)[35] 量化因子与构建方式 1. 行业扩散因子 - 构建思路:反映行业价格趋势强度的标准化指标[25] - 具体构建: - 取行业指数20日EMA - 在全行业范围内进行百分位排名 - 标准化至0-1区间[26] 2. GRU行业因子 - 构建思路:通过深度学习提取的量价特征[32] - 具体构建: - 输入5日分钟级量价序列 - 经GRU网络提取128维特征 - 全连接层输出单因子值[34] 因子的回测效果 1. 行业扩散因子 - 头部行业取值:综合金融(1.0)、钢铁(1.0)[25] - 尾部行业取值:电力及公用事业(0.534)、石油石化(0.692)[25] - 周度变化最大:煤炭(+0.49)、交通运输(+0.218)[27] 2. GRU行业因子 - 头部行业取值:银行(3.3)、房地产(0.58)[32] - 尾部行业取值:综合金融(-48.92)、食品饮料(-42.89)[32] - 周度变化最大:医药(+18位)、电力及公用事业(+17位)[32]