行业投资评级 - 报告未明确提及行业投资评级 [1] 核心观点 - 华为通过盘古大模型与昇腾AI计算平台构建软硬一体的AI技术体系,从追赶SOTA模型转向为昇腾硬件量身定制模型架构 [2] - 盘古大模型演进的核心是解决大规模分布式系统中的效率难题,特别是混合专家(MoE)架构的负载不均衡问题 [2] - 华为推出Pangu Pro MoE和Pangu Ultra MoE两种创新路径,分别通过架构创新和系统级优化最大化昇腾硬件效率 [2] - CloudMatrix AI基础设施通过统一总线网络等技术创新,为上层软件创新提供物理基础 [4] - 全栈协同是华为AI的核心战略路径,包括模型开放和硬件生态建设 [5] 目录总结 盘古大模型演进 - 盘古大模型从PanGu-α(2000亿参数)起步,基于昇腾910和MindSpore框架 [6] - PanGu-Σ(1.085万亿参数)首次尝试稀疏化架构,采用随机路由专家(RRE)和ECSS异构计算方案 [8][9][11] - 盘古3.0推出"5+N+X"三层架构,面向政务、金融等行业深度优化 [15][16] - 盘古5.5全面拥抱MoE架构,Pangu Ultra MoE(718B参数)和Pangu Pro MoE(72B参数)针对昇腾硬件优化 [20][21] Pangu Pro MoE创新 - 采用分组专家混合(MoGE)架构,通过结构性设计解决负载不均衡问题 [26][28] - 在昇腾800I A2硬件上实现Prefill阶段吞吐量比72B稠密模型高203% [40] - 推理阶段达到平均每卡1148 tokens/s,使用多令牌预测后提升至1528 tokens/s [40] Pangu Ultra MoE优化 - 采用仿真先行设计方法,通过系统仿真确定最优模型架构 [48] - 选择Dropless路由和EP-Group辅助损失,优先保障模型性能 [49][51] - 在6000卡昇腾集群上实现30%模型算力利用率(MFU),相对基线提升58.7% [55] CloudMatrix基础设施 - 采用PDC解耦架构,将Prefill、Decode和Caching分离为独立资源池 [66] - 通过统一总线(UB)网络实现跨节点通信延迟仅1.9µs,带宽164GB/s [88] - 昇腾910C NPU采用双Die封装和异构设计,单芯片提供752 TFLOPS BF16算力 [97] - CANN软件栈连接上层框架与底层硬件,支持算子融合等优化 [102]
华为盘古大模型与腾AI计算平台,共同构建软硬一体的AI技术体系
国泰海通证券·2025-08-06 21:52