Workflow
量化基金业绩跟踪周报(2025.08.11-2025.08.15):本周指增超额回撤较大-20250816
西部证券·2025-08-16 22:10

根据提供的研报内容,以下是量化模型与因子的总结: 量化模型与构建方式 1. 沪深300指增模型 - 模型构建思路:基于沪深300指数的增强策略,旨在通过量化方法获取超越基准指数的收益[9][10] - 模型具体构建过程:采用日频数据计算超额收益,年化采用242个交易日几何年化方式,比较基准为沪深300全收益指数[30] 2. 中证500指增模型 - 模型构建思路:跟踪中证500指数并通过量化方法实现超额收益[9][10] - 模型具体构建过程:与沪深300指增类似,采用日频数据计算超额收益,年化采用242个交易日几何年化方式,比较基准为中证500全收益指数[30] 3. 中证1000指增模型 - 模型构建思路:跟踪中证1000指数并通过量化方法实现超额收益[9][10] - 模型具体构建过程:采用日频数据计算超额收益,年化采用242个交易日几何年化方式,比较基准为中证1000全收益指数[30] 4. 中证A500指增模型 - 模型构建思路:跟踪中证A500指数并通过量化方法实现超额收益[9][10] - 模型具体构建过程:采用日频数据计算超额收益,年化采用242个交易日几何年化方式,比较基准为中证A500全收益指数[30] 5. 主动量化模型 - 模型构建思路:通过量化方法主动选股获取绝对收益[9][10] - 模型具体构建过程:采用日频数据计算收益,年化采用242个交易日几何年化方式[30] 6. 股票市场中性模型 - 模型构建思路:通过量化方法构建市场中性组合获取稳定收益[9][10] - 模型具体构建过程:采用日频数据计算收益,年化采用242个交易日几何年化方式[30] 模型的回测效果 1. 沪深300指增模型 - 本周超额收益均值:-0.23%[10] - 本月超额收益均值:0.10%[10] - 本年超额收益均值:0.83%[10] - 近一年跟踪误差均值:3.52%[10] 2. 中证500指增模型 - 本周超额收益均值:-0.81%[10] - 本月超额收益均值:-0.55%[10] - 本年超额收益均值:1.58%[10] - 近一年跟踪误差均值:4.97%[10] 3. 中证1000指增模型 - 本周超额收益均值:-0.78%[10] - 本月超额收益均值:-0.75%[10] - 本年超额收益均值:5.10%[10] - 近一年跟踪误差均值:5.12%[10] 4. 中证A500指增模型 - 本周超额收益均值:-0.44%[10] - 本月超额收益均值:-0.04%[10] - 本年超额收益均值:2.99%[10] - 本年跟踪误差均值:6.47%[10] 5. 主动量化模型 - 本周收益均值:2.40%[10] - 本月收益均值:4.32%[10] - 本年收益均值:17.91%[10] - 近一年最大回撤均值:14.79%[10] 6. 股票市场中性模型 - 本周收益均值:-0.38%[10] - 本月收益均值:-0.04%[10] - 本年收益均值:1.00%[10] - 近一年最大回撤均值:4.18%[10] 量化因子与构建方式 (报告中未提及具体量化因子的构建,故跳过此部分) 因子的回测效果 (报告中未提及具体量化因子的回测效果,故跳过此部分)