根据提供的量化周报内容,以下是报告中涉及的量化模型和因子的总结: 量化模型与构建方式 1 模型名称:三维择时框架 - 模型构建思路:基于流动性、分歧度和景气度三个维度对市场状态进行判断[7] - 模型具体构建过程:通过监控流动性趋势(下行)、分歧度趋势(上行)和景气度趋势(稳中有升)三个维度的变化,综合判断市场处于震荡下跌状态[7] 2 模型名称:热点趋势ETF策略 - 模型构建思路:根据K线形态和换手率筛选短期市场关注度提升的ETF构建组合[28] - 模型具体构建过程:首先选出最高价与最低价同时为上涨形态的ETF;然后根据最高价与最低价近20日回归系数的相对陡峭程度构建支撑阻力因子;最后选择因子多头组中近5日换手率/近20日换手率最高(即短期市场关注度明显提升)的10只ETF构建风险平价组合[28] 3 模型名称:资金流共振策略 - 模型构建思路:结合融资融券资金流和主动大单资金流,选择两类资金都看好的行业[37] - 模型具体构建过程:定义行业融资融券资金因子为barra市值因子中性化后的融资净买入-融券净买入(个股加总),取最近50日均值后的两周环比变化率;定义行业主动大单资金因子为行业最近一年成交量时序中性化后的净流入排序,并取最近10日均值;在主动大单因子的头部打分内做融资融券因子的剔除,以提高策略稳定性[37] 模型的回测效果 1 三维择时框架:保持震荡下跌判断[7] 2 热点趋势ETF策略:本周策略中主要包括家电、半导体、有色、国央企、石化、碳中和等行业、以及上证深证宽基等ETF[31] 3 资金流共振策略:2018年以来费后年化超额收益13.5%,信息比率1.7,相对北向-大单共振策略回撤更小;策略上周超额收益录得正向超额收益,实现2.37%的绝对收益与4.96%的超额收益(相对行业等权)[37] 量化因子与构建方式 1 因子名称:风格因子(Barra风格因子) - 因子构建思路:采用Barra框架下的经典风格因子进行市场风格分析[41] - 因子具体构建过程:包括size(市值)、beta(贝塔)、momentum(动量)、volatility(波动率)、nlsize(非线性市值)、value(价值)、liquidity(流动性)、earnings yield(盈利收益率)、growth(成长)、leverage(杠杆)等因子[42] 2 因子名称:Alpha因子 - 因子构建思路:多维度观察不同因子的表现趋势,从各时间维度、宽基指数和行业板块等角度分析因子表现[43] - 因子具体构建过程:除规模因子外,均进行市值、行业中性化处理,规模因子进行行业中性化处理;按照流通市值加权测算不同大类因子的多头收益(因子方向下前1/5组)[43] 因子的回测效果 1 风格因子近期表现: - size因子:本年-23.40%,最近一月4.72%,最近一周1.39%[42] - beta因子:本年27.16%,最近一月2.83%,最近一周2.63%[42] - momentum因子:本年-3.08%,最近一月-0.40%,最近一周0.51%[42] - volatility因子:本年-18.85%,最近一月0.80%,最近一周0.39%[42] - nlsize因子:本年-18.02%,最近一月2.02%,最近一周0.98%[42] - value因子:本年-4.53%,最近一月-1.25%,最近一周-1.35%[42] - liquidity因子:本年-10.35%,最近一月0.52%,最近一周1.13%[42] - earnings yield因子:本年-10.40%,最近一月0.84%,最近一周-0.50%[42] - growth因子:本年-0.45%,最近一月4.73%,最近一周1.51%[42] - leverage因子:本年-9.29%,最近一月2.38%,最近一周-0.64%[42] 2 Alpha因子近期表现: - 机构持仓类因子:io to float a share近一周多头超额1.33%,近一月3.68%[46] - 动量类因子:mom 1y 1m近一周多头超额0.94%,近一月1.79%[46] - 成长类因子:tot rd ttm to assets在不同宽基指数中表现稳健,在沪深300中多头超额22.36%,中证500中19.16%,中证1000中22.48%,中证800中26.49%[48]
市场进入盘整期
民生证券·2025-10-19 21:02