量化模型与因子总结 量化模型与构建方式 1. 模型名称:多因子模型[2][15][18] * 模型构建思路:通过综合多个能够预测股票收益的因子(特征)来构建投资组合,以期获得超越基准的收益[15][18]。 * 模型具体构建过程:研报未详细描述具体的多因子模型构建过程,仅将其作为一类基金(多因子基金)的投资策略进行归类统计[15][18]。 2. 模型名称:行业主题轮动模型[2][15][18] * 模型构建思路:根据对宏观经济、市场情绪、行业景气度等因素的判断,动态调整在不同行业或主题上的配置权重,以捕捉不同阶段的投资机会[15][18]。 * 模型具体构建过程:研报未详细描述具体的行业主题轮动模型构建过程,仅将其作为一类基金(行业主题轮动基金)的投资策略进行归类统计[15][18]。 3. 模型名称:大数据驱动主动投资模型[2][15][19][20] * 模型构建思路:利用海量、非结构化的数据(如互联网搜索数据、社交媒体舆情、电商交易数据等)作为信息源,通过机器学习、自然语言处理等技术提取有效信号,辅助投资决策[15][19][20]。 * 模型具体构建过程:研报未详细描述具体的大数据模型构建过程,仅将其作为一类基金(大数据驱动主动投资基金)的投资策略进行归类统计[15][19][20]。 模型的回测效果 1. 多因子模型,本周收益中位数5.54%,本月收益中位数5.54%,本季度收益中位数5.54%,本年度收益中位数5.54%[18]。 2. 行业主题轮动模型,本周收益中位数4.48%,本月收益中位数4.48%,本季度收益中位数4.48%,本年度收益中位数4.48%[18]。 3. 大数据驱动主动投资模型,本周收益中位数8.19%,本月收益中位数8.19%,本季度收益中位数8.19%,本年度收益中位数8.19%[19][20]。 量化因子与构建方式 * 本研报主要对采用不同量化模型或策略的基金产品进行业绩统计和分类,并未涉及具体量化因子的构建与测试[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20]。 因子的回测效果 * 本研报未涉及具体量化因子的测试结果。
量化基金周报-20260112
银河证券·2026-01-12 19:04