数据中心与AI基础设施 - 预计2028年数据中心资本开支将达1万亿美元,主要用于加速计算芯片[1][2] - 2024年向四大云服务商交付130万颗Hopper GPU,2025年计划出货360万颗Blackwell GPU[2] - AI基础设施计算量较去年预计增长100倍,Tokens数量大幅增加[2][9][10] - 数据中心正在向"人工智能工厂"转型,专注于AI驱动的处理和应用[13] Blackwell平台与未来产品 - Blackwell已全面投产,NVL72结合Dynamo推理性能提升40倍[3] - 计划25H2发布Blackwell Ultra,算力提升50%,FP8精度算力达0.36EF[3] - 预计26H2推出Vera Rubin NVL144,推理能力达每秒50千万亿次浮点运算[3] - 预计27H2推出Rubin Ultra NVL576,FP4精度算力达15EF,性能较GB300提升14倍[3] - 预计2028年推出Feynman平台,迎接千兆瓦AI工厂时代[3] CPO交换机技术 - 预计25H2推出Quantum-X CPO交换机,交换容量115.2Tb/s,能耗降低3.5倍[5] - 预计26H2推出Spectrum-X CPO交换机,包含两种型号,最高背板带宽409.6TB/S[5] - 采用MRM micro mirror技术,可将连续激光束转化为二进制信号[5] - CPO技术可帮助数据中心节省60MW电力,相当于100个Rubin机柜耗电量[5] 自动驾驶与机器人技术 - 推出Halos系统保障汽车安全,已评估700万行代码并申请1000多项专利[25][26] - 借助Omniverse和Cosmos加速自动驾驶开发,实现端到端训练[26] - 推出开源通用基础模型Isaac Groot N1,具有快慢双系统架构[6][61] - 预计到2030年全球将短缺5000万名工人,机器人产业潜力巨大[60] AI技术演进与应用 - AI分为三个层次:生成式AI、智能体AI和物理AI[7] - 推理模型带来100倍Tokens增长,计算速度需提升10倍[9][10][11] - 推出Dynamo操作系统,Blackwell性能是Hopper的40倍[35][38] - CUDA-X行业框架覆盖计算光刻、5G、基因测序等多个领域[14][15] 产品路线图与技术突破 - 每年更新路线图,每两年更新架构,持续推出新产品[53] - 采用液冷技术,单个机架功率达120千瓦,含60万个部件[29][30] - 光子学技术突破,硅光子交换机可扩展到数百万GPU规模[47][48] - 与台积电合作采用3D共封装技术,实现高性能光子集成电路[49]
【招商电子】英伟达GTC 2025跟踪报告:2028年全球万亿美金Capex可期,关注CPO、正交背板等新技术趋势