Workflow
华尔街这是“约好了一起唱空”?巴克莱:现有AI算力似乎足以满足需求
巴克莱巴克莱(US:BCS) 硬AI·2025-03-27 10:52

算力供需分析 - 2025年全球AI算力可支持15-220亿个AI Agent,足以满足欧美1亿多白领和10亿企业软件许可证需求 [3][4] - 2025年全球将有1570万个AI加速器在线,其中40%(630万个)用于推理,50%推理算力(310万个)专用于Agent/聊天机器人 [4] - 现有H100等效安装基数为1570万颗,其中60%(940万颗)用于训练,40%(630万颗)用于推理,50%推理芯片(310万颗)分配给Agent服务 [5] - 使用高效模型(如DeepSeek R1)可使行业容量提升15倍,企业正转向开源模型(如Mistral)降低成本 [6][11] - 表面算力充足但存在结构性缺口,需更多专用推理芯片和训练GPU转推理用途 [13] 市场机会与竞争格局 - AI Agent市场增长潜力巨大,低推理成本和开源模型是盈利关键 [8][9] - 高效推理成本结构和专注小型高效模型的公司更具竞争优势 [13] - 超级Agent产品(如GPT-5)单月消耗3560万Token,日查询44次,远超普通Agent的2.6次 [18] 模型经济效益对比 - OpenAI o1模型Agent年成本2400美元,DeepSeek R1仅88美元,后者用户容量是前者15倍 [15] - Agent单次查询生成1万Token(传统聊天机器人400个),推理成本增加25倍 [15] - 不同模型参数差异显著:GPT-5参数1.5万亿(活跃33%),DeepSeek R1参数671亿(活跃6%) [5] 技术发展趋势 - 行业需从基准测试转向实用Agent部署,关注单位经济学 [2][13] - 更便宜/小型高效模型(如DeepSeek风格)是未来需求方向 [13]