Workflow
图灵奖得主LeCun:人类智能不是通用智能,下一代AI可能基于非生成式
Meta PlatformsMeta Platforms(US:META) 量子位·2025-04-14 17:09

核心观点 - 人类智能并非通用智能,而是高度专业化的进化产物 [1][2] - 下一代AI突破可能基于非生成式模型而非当前热门的生成式AI [3][6][14] - 实现人类级AI需解决物理世界建模、推理规划、持久记忆等关键技术 [17][22][23] - AGI概念具有误导性,建议使用"高级机器智能(AMI)"替代 [18] - 开源策略是推动AI生态发展的关键,Meta的LLaMA开源案例已验证其价值 [25][27][33] AI技术发展方向 - 当前AI局限:无法解决新问题、缺乏真实推理能力、依赖语言而非物理理解 [20][21] - 未来突破方向:JEPA架构(联合嵌入预测)可避免像素级生成,转向抽象表征空间推理 [13] - 智能眼镜被视为AI技术落地的重要载体,需整合多感官交互与环境感知能力 [29][32] 行业生态与商业模式 - Meta开源LLaMA系列的战略逻辑:通过开放基础模型扩大广告业务生态而非直接技术变现 [25][27] - 开源模式推动学术研究,使大学等资源有限机构能参与前沿AI开发 [26] - 创新分布全球化,DeepSeek等开源项目崛起证明技术突破可来自任何地区 [27][31] 时间框架预测 - AGI(或AMI)在未来两年内不可能实现,但十年内可能取得重大进展 [18][24] - 历史表明AI突破周期长于预期,如深度学习从理论提出到爆发间隔30年 [20] 技术应用场景 - 未来AI助手特征:全天候响应、多模态交互、专业化分工的虚拟团队 [32][34] - 当前AI优势领域:通过律师考试(信息检索)、代码生成(严格语法)、文本摘要等结构化任务 [20]