大模型开源趋势与行业影响 - DeepSeek重塑全球大模型格局,扭转行业对开源的理解,推动百度、MiniMax、阶跃星辰等公司转向开源[2][3] - DeepSeek计划开源5个训练、推理相关的代码库,超越多数公司仅开放模型权重的做法[4] - 开源大模型通过降低创新成本、建立生态可能形成"事实标准",如DeepSeek模型推理成本低推动生态自然形成[5][17] 开源数据集与模型性能 - 激进主张认为真正的大模型开源需包含训练数据集,类似维基百科由非营利机构牵头共建[6][9] - 开源模型串接(Llama/Mistral/Qwen)评测表现优于GPT-4o近10个百分点,证明开源数据集潜力[10][11] - 模型能力核心依赖训练数据质量,建议采用GPL类传染性许可证强制商业公司回馈数据集[13][14] 开源商业化路径 - DeepSeek未融资使其能专注技术追求,但未来需探索开源生态商业化如Red Hat的订阅服务模式[23][24] - 开源成功案例显示商业化可通过API服务、技术支持实现,生态需允许其他玩家盈利[28][39] - 中国开源受限于企业定制化需求强、软件采购方强势,但工程师规模全球第二[25][26] 公司开源策略差异 - Meta因错过云计算选择开源AI构建生态,阿里开源驱动因素包括技术品牌建设与云计算业务协同[29][30] - 阿里通过开源委员会流程化管理,将开源贡献纳入职级评审,推动外部贡献者占比提升[35] - 字节闭源、阿里部分开源、DeepSeek全开源的分化源于商业化路径选择差异[28] 开源生态建设经验 - 阿里早期开源tair缓存系统提升技术声誉,工程师因代码公开更注重质量[34] - 开源虽可能被竞品利用(如京东使用阿里开源软件),但能积累不可复制的数据资产与人才吸引力[38] - 中国大模型开源将持续,需多方共建生态形成正反馈,类似Linux成功模式[27][37] 技术演进与行业竞争 - OpenAI闭源因商业化压力难以回头,其有限开源o3-mini模型被视作挽回关注度的举措[19][21] - 芯片禁运背景下,DeepSeek开源策略为中国大模型发展提供关键路径启示[18] - 未来行业可能并存开源非营利巨头与闭源商业巨头,中等规模玩家共存[39]
对谈 98 年就做开源的章文嵩:要像维基百科那样,开源共建大模型数据集丨开源对话#1
晚点LatePost·2025-02-27 22:03