Workflow
OpenAI教你做Agent:2025年,评估标准和如何产品化是Agent的重点
Founder Park·2025-04-25 21:29

AI Agent技术演进 - 2024年至2025年AI agent的行动能力和交互方式发生质变,头部模型厂商将agentic能力融入模型,成为模型竞赛重点之一 [2] - agent获取信息方式从单次搜索决策模式转变为完全自主的Deep Research模式,能同时打开多个网页节省时间 [3] - OpenAI判断agent可调用的工具数量将在几个月内从10个量级扩展到100个量级 [4] - multi agent系统具备更高可控性和优化潜力,通过任务分拆提升整体工作效率 [5] - vertical agent将直接受益于multi-agent系统发展 [6] 开发者工具与评估 - 开发者需要构建agent评估微调飞轮,通过强化微调能力让模型找到正确tool use路径 [7] - 评估器需能将模型输出与权威资料对比或执行代码验证数学正确性,而非简单字符串比对 [8] - 强化微调方法可推动模型在特定行业深入应用,实现专业化能力提升 [20] - 目前AI领域核心问题是评分机制,如何构建高质量任务和评分器成为重要课题 [21] Computer Use创新 - Computer Use处于早期阶段,VM(虚拟机)需要开发者填补空白,可能出现专门做iPhone VM的公司 [10] - computer use应用场景包括无API的传统软件系统自动化,如医疗行业手工操作和Google Maps街景分析 [22] - BrowserBase和Scrapybara等公司提供computer use模型托管服务,开发者可便捷访问底层控制 [25][26] - Arc浏览器开发的Dia项目将agent深度集成到浏览器中,成为浏览器本身的一部分 [29] 开发者实践与API设计 - multi agent系统通过任务分拆使调试更独立,降低修改风险 [31][33] - OpenAI采用"阶梯式API"设计理念,平衡易用性与可定制性,如向量搜索默认配置可逐步调整 [34] - Assistants API的tool use功能(如文件搜索)找到市场契合点,但使用门槛过高需优化 [36] - Responses API优化多轮交互体验,与MCP生态互补,需深入思考如何更好整合 [37] 行业应用与前景 - AI infra公司垂直化发展仍有市场需求,如Runloop AI为AI coding初创企业提供测试虚拟机 [38] - computer use在网络安全领域应用,如探测网站系统漏洞 [42] - 模型在科学研究领域应用被低估,可能加速科研进程 [53] - 旅游行业存在创新机会,期待AI agent打破传统格局 [56]