混合键合技术概述 - 混合键合技术是后摩尔时代突破芯片性能瓶颈的关键路径,通过铜-铜直接键合与介质键合实现高密度垂直互连,互连间距可缩小至亚微米级甚至纳米级 [1][3] - 该技术相较传统凸块键合(20μm以上)可将单位面积I/O接点数量提升千倍以上,数据传输带宽大幅提升 [3] - 技术优势包括极致互连密度与性能突破、热管理与可靠性提升、三维集成与异构设计灵活性、工艺兼容性与成本优化潜力 [3] 技术应用进展 - SK海力士在HBM3E中采用混合键合技术,散热性能显著提升,成功通过12层以上堆叠可靠性测试 [5] - 三星在3D DRAM中通过混合键合替代部分TSV,芯片表面积降低30%,计划从2025年下半年量产的V10 NAND开始引入该技术 [8] - 台积电SoIC技术通过混合键合实现逻辑芯片与SRAM堆叠,使AMD 3D V-Cache处理器L3缓存容量提升3倍,性能提高15% [8] - 博通3.5D XDSiP平台通过混合键合实现7倍于传统封装的信号密度,平面芯片间PHY接口功耗降低90% [8] - 索尼2016年为三星Galaxy S7 Edge生产的IMX260 CIS是首个采用混合键合技术的商用化产品,接点间距仅9µm [11] 设备市场发展 - 全球混合键合设备市场规模2023年约4.21亿美元,预计2030年达13.32亿美元,年复合增长率30% [13] - 应用材料通过收购BESI 9%股权构建混合键合全链条能力,目标覆盖从介电层沉积到键合的全链条需求 [14][15] - ASMPT聚焦热压键合与混合键合双技术路线,2024年推出AOR TCB™技术支持12-16层HBM堆叠,I/O间距缩小至个位数微米 [16] - BESI预计2025年混合键合系统需求将急剧增加,目标市占率提升至40%,计划越南工厂二期扩产新增年产180台混合键合机产能 [18] - 库力索法主推Fluxless TCB技术,成本较混合键合低40%,计划2026年推出支持90×120mm大芯片的机型 [20][21] 行业竞争格局 - 混合键合设备市场竞争本质是"精度、成本、生态"的三重博弈 [22] - 应用材料通过全流程整合形成全产业链整合能力,ASMPT以精度壁垒引领HBM封装升级,BESI凭借高精度设备在AI领域实现快速增长,库力索法以TCB性价比延缓技术替代 [22] - 国产设备厂商如拓荆科技、青禾晶元、芯慧联等加速布局混合键合领域,推动国产替代进程 [22] 技术发展前景 - 混合键合技术预计到2030年将覆盖全球30%以上的高端芯片市场 [12] - 该技术将持续推动半导体产业向更高密度、更低功耗的方向演进,成为后摩尔时代的核心竞争力 [12] - 随着HBM4量产临近(预计2026年),具备设备-材料-工艺协同能力的厂商将主导市场 [22]
混合键合,风云再起