Workflow
颠覆谷歌搜索API,成本降至88%,阿里开源RL框架ZeroSearch,重新定义AI搜索!

阿里巴巴通义团队开源ZeroSearch解决方案 - 仅需70.8美元在4块A100 GPU上运行140亿参数模型,即可获得媲美谷歌搜索的AI搜索能力 [1] - ZeroSearch是由大模型驱动的生成式搜索引擎框架,训练过程无需调用外部搜索接口,实现低成本高性能检索能力构建 [1] - 解决方案通过强化学习框架在不与真实搜索引擎交互的前提下训练出"搜索能力" [2] ZeroSearch技术原理 - 采用轻量级监督微调将大模型转化为检索模块,能根据查询生成相关与干扰文档 [2][8] - 引入基于课程学习的rollout策略,逐步降低生成文档质量,挑战模型推理和检索能力 [8] - 训练过程中由模拟引擎直接生成文档模拟搜索结果,完全无需调用真实搜索引擎 [6] 性能表现与成本优势 - 在多个实验场景中实现80%-90%训练成本降低 [10] - 使用14B参数模型训练成本仅70.8美元,相比传统方法成本降低高达88% [16] - 7B参数模型已可与谷歌搜索媲美,14B参数版本甚至超越谷歌搜索结果质量 [15] 实验结果 - 在NQ、TriviaQA等7个公开问答数据集上均超过或持平使用真实搜索引擎训练的模型 [15] - ZeroSearch-inst版本在多个任务中表现最佳,平均得分达40.54 [11] - 在TriviaQA任务中得分高达63.54,显著优于谷歌搜索的61.22 [11][15] 应用与扩展性 - 方案已开源代码、数据集和预训练模型 [15] - 可广泛兼容各类LLM,包括Qwen 2.5与LLaMA 3.2等基础版与指令微调版 [16] - 显示出极强的可泛化性和扩展能力 [16]