行业趋势 - AI芯片行业正从大规模训练市场转向更现实的推理市场,Nvidia在训练芯片市场占据主导地位,而其他公司如Graphcore、英特尔Gaudi、SambaNova等转向推理市场 [1] - 训练芯片市场门槛高,需要重资本、重算力和成熟的软件生态,新晋企业难以生存,推理芯片成为更易规模化落地的选择 [1] - 推理市场对内存和网络的要求较低,适合初创公司切入,而Nvidia在训练市场的优势包括HBM内存和NVLink等网络技术 [21][22] Graphcore - Graphcore曾专注于训练芯片,其IPU处理器采用并行处理架构,适合处理稀疏数据,在化学材料和医疗领域表现突出 [2][4] - 2020年Graphcore估值达28亿美元,但其IPU系统在大型训练项目中难以挑战Nvidia,2021年微软终止合作后公司开始衰落 [4][5] - 2024年软银收购Graphcore后转向推理市场,优化Poplar SDK,推出轻量级推理方案,聚焦金融、医疗和政府场景 [6] 英特尔Gaudi - 英特尔2019年以20亿美元收购Habana Labs,Gaudi系列主打训练和推理,Gaudi2对比Nvidia A100吞吐量性能提高2倍 [7][9] - 英特尔内部存在Habana与GPU部门的竞争,官僚效率低下影响决策,Gaudi训练平台市场采用率低迷 [9][10] - 2023年Gaudi转向训练+推理并重,Gaudi3强调推理性能和成本优势,每美元推理吞吐量高于GPU近30%,但未能达到营收预期 [10][11] Groq - Groq创始人曾参与Google TPU设计,其LPU架构采用确定性设计,主打低延迟和高吞吐率,适合推理任务 [12][14] - 早期尝试训练市场失败后转向推理即服务,2024年展示Llama 2-70B模型每秒生成300+ Token,吸引金融、军事等延迟敏感行业 [15] - GroqCloud平台提供API接口,与LangChain等生态集成,定位为AI推理云服务提供商 [15] SambaNova - SambaNova采用RDU架构,曾重视训练市场,但2022年后转向推理即服务,推出SambaNova Suite企业AI系统 [16][18] - 2024年裁员15%并完全转向推理,聚焦政府、金融和医疗等私有化模型部署需求强烈的领域 [18][19] - 提供多语言文本分析、智能问答等推理服务,商业化路径逐渐清晰 [19] 技术对比 - Nvidia在训练市场的优势包括CUDA生态、HBM内存和NVLink网络技术,初创公司难以竞争 [21][22] - 推理任务内存负担低,无需存储梯度和复杂网络通信,适合初创公司设计专用芯片 [21] - 未来AI芯片竞争将更注重成本、部署和可维护性,推理市场成为战略重点 [23]
芯片新贵,集体转向