Workflow
华为+DeepSeek,终于不再“服务器繁忙”?
虎嗅APP·2025-05-20 22:00

大模型与MoE架构挑战 - 主流MoE架构大模型存在硬件成本高、效率低等"先天不足",中国企业面临芯片堆砌与效率挖掘的挑战[1] - 华为作为智能基础设施提供商,通过数学算法和工程积累为DeepSeek提升效率及用户体验[1] MoE模型的冷热专家问题 - MoE模型通过分配token给不同专家网络实现高效扩展,但面临负载不均衡的严峻挑战[4] - 冷热专家现象表现为:热专家调用频率比冷专家高一个数量级,导致推理延迟增加、吞吐量受限[4] 华为OmniPlacement负载均衡技术 - 通过专家重排、层间冗余部署和近实时动态调度提升MoE模型推理性能[7] - 动态优先级调整:实时统计专家调用频率,优先将高频专家部署在强计算节点[7] - 通信域优化:分析批次内激活卡数,减少跨节点通信延迟[7] 层间高频专家冗余部署 - 为热专家分配冗余实例降低跨节点通信开销,提升系统吞吐量[8] - 动态资源分配:根据实时资源占用和调用频率调整冗余实例比例[9] - 层间差异化配置:高负载层分配更多冗余实例,低负载层减少冗余节省显存[9] 近实时调度与监控机制 - 毫秒级动态调整专家分配,迭代优化部署模式降低计算开销[10] - 独立计算流运行监控任务,避免干扰推理主流程[10] - 层间流水线设计实现专家权重动态调整,降低高负载场景延迟[10] OmniPlacement框架特性 - 高兼容性:支持多种MoE模型架构,无缝集成现有推理系统[12] - 低时延开销:优化数据处理和调度流程减少额外计算开销[12] - 模块化设计:数据统计、算法运行和专家调度三大模块解耦[12] 性能验证与未来方向 - 实验显示OmniPlacement使DeepSeek-V3推理延迟降低10%,吞吐量提升10%[14] - 未来研究方向包括调度算法优化、自适应专家选择和框架扩展[15] - 技术突破体现华为在芯片架构、算法和软件生态的长期积累[15]