Workflow
先进封装之困
半导体行业观察·2025-05-23 09:21

多芯片组装与异构集成 - 多芯片组装通过复杂封装提升性能并降低功耗,但面临芯片到RDL错位、翘曲轮廓变化和CTE不匹配等挑战[1] - 异构集成将不同工艺组件整合到单一封装中,相比单片硅片集成更具成本效益且良率更高[1] - 集成到单个封装可减少电路占用空间并提高性能,但不同元件集成到单一基板是重大挑战[1] - 移动设备包含传感器、收发器、存储器等组件,模拟和功率元件需独特工艺步骤及更厚金属层[1] 中介层技术 - 异构组件普遍使用中介层连接电路与外界,通过扇出布线或嵌入式桥接(如Intel EMIB)实现互连[3] - 中介层材料选择取决于互连和功率密度需求,需管理硅器件与铜基布线的CTE差异[3] - 铜柱填充有机电介质时CTE不匹配会导致界面裂纹,功率器件因产热多使CTE管理更困难[4] - 光互连技术需控制基板折射率对比度,面板级封装因尺寸问题面临工艺和检测设备适配挑战[4] 封装工艺挑战 - 面板级封装中芯片移位和翘曲控制难度高,模塑料与转移胶带的CTE差异导致面板变形和芯片错位[6] - 封装材料硬化后芯片偏移可能固定,随机偏移由热异常或模塑料不均匀性引起,混合键合错位难检测[7] - 英特尔EMIB通过预制井设计解决芯片移位,弗劳恩霍夫团队提出无掩模光刻定制RDL焊盘方案[7] 功率与光学器件封装 - 功率器件封装需低损耗、低噪声且热特性优异,环氧基模具化合物可能因热电场退化导致击穿[8][9] - 硅凝胶作为绝缘体替代方案具有热稳定性但防水性差,双层封装结合聚氨酯和硅胶层可平衡性能[9] - 光学器件集成需精确控制波导和无源元件,折射率管理是光互连封装的关键[4] 协同优化与标准化 - 封装设计与组件器件需协同优化,噪声和热特性相互影响,UCIe等标准化接口是基础但需仿真验证[9] - 异构封装模糊片上与片外界限,要求从整体组件角度评估工艺而非单一步骤[6][9]