AI生成内容的未来 - AI生成内容的核心问题不是真假之辨,而是内容的可信度与能否引发共鸣 [3] - 长期来看,大多数内容将由AI生成,"是否AI生成"的问题将变得无意义 [3][7] - 未来重点将是内容的来源、溯源和引用问题,AI反而可能更有助于解决这些问题 [3][7] - AI只是讲故事者工具箱中的一个工具,关键在于能否讲出吸引人的故事 [3] AI产品开发方法论 - 优秀AI产品的标准始终是能否解决真实问题 [4] - 最好的AI产品往往不是计划出来的,而是从底层自发长出来的 [5][7] - 产品开发路径应从"自上而下"转为"自下而上" [5][7] - Artifacts最初是一个研究原型,后来才进入产品化阶段 [5] - MCP协议起源于两个工程师的"小火花",后来发展为行业标准 [6] MCP协议的发展 - MCP最初设计目标是引入上下文,现已能集成GitHub、触发Zapier等操作 [8] - 下一阶段目标是让模型不仅能"理解"还要能"行动",自动执行工作流 [8] - 未来将探索AI Agent之间的协作,可能形成新的AI经济系统 [8] - 公司内部已开始讨论"Agent雇佣其他Agent"的场景 [8] AI在编程领域的应用 - 公司内部超过70%的Pull Request由Claude代码生成 [10] - 模型生成的代码是否用户喜欢用比Benchmark分数更重要 [10] - 正在探索生成式AI在整个开发流程中的定位 [10] - 面临代码审查、技术架构可控性等新问题 [10] AI对组织效率的影响 - AI让工程效率提升后,组织中的"非工程环节"低效变得更加明显 [11] - 以前一个对齐会议耽误一个工程师一小时,现在等于耽误8小时的AI产出 [11] - 模型可以总结会议、提出建议,但还无法帮助做出组织层面的决策 [11] AI在组织中的应用 - 非技术团队如销售团队开始主动使用模型 [12] - 公司内部文化发生变化,从犹豫使用AI到鼓励使用AI [13] - 内部工具帮助打破"AI使用羞耻感",推动AI融入日常工作 [13] - 模型被用作"思维合伙人",用于战略文档、绩效评语等 [12] AI Agent发展方向 - 目标是让AI Agent成为下一代"数字员工" [14] - 需要配套系统:记忆能力、高级工具调用、自动适应组织结构、可验证性 [14] - 模型不仅要更强大,还需要一整套配套系统支持 [14] - 不打算做生态里的每一个环节,但希望成为构建的基石 [14] AI产品面临的挑战 - AI产品对新手来说仍然太难用 [16] - 使用路径稍微偏离主线,效果就会大打折扣 [16] - 模型能力很强,但实际能用好的用户太少,潜力远未释放 [16] - 与当前偏重"工作场景"而非"日常娱乐"有关 [16] 研究与应用平衡 - 产品团队需要思考如何充分利用研究成果 [18] - 理想AI产品团队应包括产品经理、工程师、Applied AI人员、微调团队成员 [18] - 目前只有约10%的研究人员参与到产品中 [18] - 基础性研究如让模型更好执行指令仍在投入 [18] AI Agent交互协议 - 关键问题是Agent要不要透露信息、透露多少 [19] - 模型本能想"讨好"用户,容易透露太多或过度保守 [19] - 另一个挑战是如何在大规模部署时进行可审计 [19] - 这些问题既是产品设计问题,也是研究课题 [19] AI应用层产品常见问题 - 很多AI产品从"轻量AI"开始,逐步变"重AI",但结构拖后腿 [20] - 应用没有暴露足够多的"操作原语"给模型使用 [20] - 应该先考虑AI怎么用产品,让AI成为产品的"主要使用者" [20]
深度|Anthropic首席产品官:从Claude到MCP,最好的AI产品不是计划出来的,是从底层自发长出来的
Z Potentials·2025-05-25 12:37