Workflow
数据洪流下,如何重构 AI 时代的数据基础设施?
声动活泼·2025-05-26 18:36

AI时代数据变革与挑战 - 2025年全球数据总量预计突破175ZB 数据类型从结构化向无结构/多模态/碎片化转变 传统数据库面临重构需求 [1] - AI时代数据需求三大变化:数据类型扩展至半/非结构化 数据规模几何级增长 查询方式从纯SQL转向混合查询 [3] - 数据处理能力成为AI核心要素 高质量数据提升模型精度 AI技术反哺非结构化数据处理自动化 [6] 数据赛道商业价值 - 数据赛道确定性极强 PaaS层作为连接IaaS与应用层的桥梁 将形成寡头格局而应用层分散 [4] - 企业"数据债"转化路径:分布式系统提升处理能力 大语言模型降低数据使用门槛 自然语言交互替代传统BI流程 [5] - 数据公司与AI公司边界模糊化 顶级企业需兼具双重能力 数据迁移成本构成竞争壁垒 [10] OceanBase技术战略 - 核心优势:原生分布式架构+一体化引擎 支持交易/分析/半结构化数据混合处理 代表AI时代基础设施趋势 [11][12] - 技术重构案例:单条SQL完成从人群筛选到AI邮件生成 简化开发者工作流但大幅提升底层复杂度 [14][15] - 开源战略定位世界级开源数据库 瞄准MySQL生态空白 计划持续投入15年以上 [16] 全球化竞争格局 - 海外市场三大优势:一体化工作负载处理 全规模数据高效处理 显著性价比优势 [17] - 出海挑战:东南亚生态不完善 迁移人才短缺 需复制新能源汽车产业抱团模式 [17] - AI出海机遇:中国技术全球领先 南美/东南亚基建空白 预计5年内华人主导当地企业运营 [19][20] 产品与行业趋势 - 新品发布三大方向:数据库分析能力增强 向量数据库与混合检索优化 PowerRAG服务简化开发 [22] - 开发者机遇:Data×AI时代初期 应用爆发增长 建议保持开放学习心态 [23] - SaaS行业转折点:AI工具将定制服务产品化 结合出海或引发产业爆发 [21]