华为Pangu Ultra MoE模型技术突破 - 华为推出参数规模高达718B的准万亿MoE模型Pangu Ultra MoE 该模型融合计算、通信和内存等多维度指标 在昇腾NPU平台上实现最佳平衡 [6] - 模型采用256个路由专家 每个token激活8个专家 总参数量718B 激活量39B 具有超大规模和超高稀疏比特性 [6] - 引入MLA注意力机制 有效压缩KV Cache空间 缓解推理阶段内存带宽瓶颈 优于传统GQA方案 [6] 模型架构创新 - 采用Depth-Scaled Sandwich-Norm稳定架构和TinyInit小初始化方法 使梯度突刺率从1.54%下降到0.76% 相对下降51% [13][17] - 设计EP-Group负载均衡loss 相比主流Micro-batch方案在大部分任务上平均提升1.5个点 [20][21] - 采用单头MTP进行训练 后续复用参数扩展至多头结构 实现多Token投机推理 接受长度提升约38% [26][27] 训练方法优化 - 全流程采用dropless训练模式 避免Drop&Pad训推不一致问题 提升训练数据效率 [7] - 预训练阶段在6k到10k张NPU上进行 具备128k长序列能力 [8] - 采用迭代难例挖掘与多能力项均衡的奖励函数 参考GRPO算法提升训练效率与推理性能 [29][31] 昇腾硬件亲和设计 - 隐藏维度设置为7680维 精准匹配DaVinci芯片的16×16 MatMul单元 充分发挥计算潜力 [7] - 设置61层Transformer结构 预留额外MTP层空间 保障计算负载均衡的流水线调度 [7] - 路由专家数量设为256 在TP×EP并行下提升All-to-All通信效率 加速分布式训练 [7] 模型性能表现 - 在C-Eval评测中得分90.8 CLUEWSC得分94.8 MMLU得分91.5 整体效果优于主流模型 [9] - 在推理能力评测中 AIME2024得分81.3 GPQA-Diamond得分75.3 MATH500得分97.4 [9] - 强化学习训练系统有效解决了多能力协同提升问题 保持模型在数学、代码和通用能力的均衡表现 [31]
训练大模型,终于可以“既要又要还要”了
虎嗅APP·2025-05-29 18:34