半导体封装技术进展 - 半导体封装的下一个重大飞跃需要新技术、新工艺和新材料,以实现性能数量级提升,对人工智能时代至关重要 [1] - AMD、台积电、三星、英特尔等公司在混合键合、玻璃芯基板、微通道冷却等方面取得显著进步 [1] - 人工智能对计算的需求将持续增长,芯片制造和封装创新将发挥核心作用 [2] 热管理与液体冷却技术 - 芯片级液体冷却技术正在兴起,以解决强制风冷技术的极限问题 [4] - 台积电的硅集成微冷却器 (IMEC-Si) 在10升/分钟水流条件下可实现超过3,000瓦的均匀功耗,功率密度高达2.5 W/mm² [6] - 佐治亚理工学院提出“芯片作为冷却剂”概念,采用5nm TSV的硅散热器冷却能力超过300W/cm² [9] - 三星在移动处理器中采用铜基散热块,散热性能提高20% [11][13] 混合键合技术 - 混合键合间距已从10µm微缩至1µm,英特尔展示了相关研究成果 [5][16] - 工研院和Brewer Science展示了五层堆叠结构,采用聚合物/铜RDL进行铜-铜混合键合,适用于高速数字应用 [14] - 晶圆间键合和芯片间键合各有优势,后者在贴装精度和翘曲控制方面面临挑战 [17] 背面供电技术 - 背面供电技术在晶圆背面构建供电网络,降低晶体管电压降,但加剧了热点问题 [19] - IBM开发了AI模型用于精确计算后端堆栈的传热,优化设计阶段的散热考虑 [21] - Imec模拟显示,背面供电网络在逻辑和存储器堆叠中的热影响显著,逻辑芯片位于顶层的配置受存储器温度限制 [23][24] 共封装光学器件 (CPO) - 共封装光学器件将光学引擎与GPU和HBM集成,传输速度从200 Gb/s提升到6.4Tb/s,带宽提高32倍 [26] - ASE展示了用于ASIC交换机和以太网/HBM的模块化CPO平台 [28] - 康宁和Fraunhofer IZM提出可扩展的平面二维波导电路,减少光纤电缆端接和手动组装需求 [28] 热模拟与封装设计 - 热模拟在多芯片组封装设计中发挥关键作用,用于选择最终设计并降低风险 [28] - Imec的3D堆栈模拟显示,层间冷却技术可将温度从500°C降至50°C左右 [24]
3D芯片堆叠,新方法