第三代生物炼制技术概述 - 利用CO2、CO、甲烷等一碳气体作为原料进行生物转化,是实现碳资源捕捉利用和绿色制造的重要途径[1] - 相比传统生物炼制技术(玉米/木质纤维素为原料),第三代技术具有原料广泛、成本低、环境友好等优势[3][8] - 全球已有商业化案例:首钢京唐4.5万吨/年钢铁尾气制乙醇项目年减排17万吨CO2,宁夏铁合金尾气项目年产4.5万吨乙醇并减排18万吨CO2[4] 技术发展历程 - 第一代生物炼制(1970s起):以玉米/油料作物为原料,存在与粮争地问题[7][8] - 第二代生物炼制:转向木质纤维素原料,但面临结构复杂、高能耗等技术瓶颈[8] - 第三代生物炼制(21世纪):直接利用CO2和可再生能源,微藻培养效率提升20-30倍,工程菌株脂肪酸乙酯产量达50-70g/L[9][10] 固碳代谢途径 - 已发现7种天然固碳途径:包括卡尔文循环(光能驱动)、伍德-永达尔途径(厌氧)、还原性甘氨酸途径(低ATP需求)等[11][12] - 人工设计途径进展:ASAP途径实现无细胞淀粉合成,CETCH循环能量消耗比CBB循环低40%,ICE-CAP途径创生物固碳速率纪录[35] - 关键酶突破:改造RuBisCO减少光呼吸损耗,优化4-羟基丁酰CoA脱水酶提升3HP/4HB循环效率[13][25] 微生物工程化进展 自养微生物改造 - 食气梭菌:通过电极辅助发酵将乙酸产量提至50g/L,Lanza Tech已实现工业废气制乙醇商业化[38][40] - 蓝细菌:引入蜡酯合成酶实现脂肪酸乙酯合成,改造Rubisco酶使CO2固定速率提升30%[43][44] - 微藻:生产1吨生物质可固定1.8吨CO2,美国Green Fuel公司建成1040MW级微藻固碳系统[45] 异养微生物改造 - 能量供给创新:半导体纳米捕光系统使大肠杆菌苹果酸产量达1.48mol/mol葡萄糖[48] - 途径强化:大肠杆菌过表达CO2转运蛋白sbtA使琥珀酸产量增加10%,构建羧酶体提升固定效率[49] - 异源途径引入:毕赤酵母导入CBB循环实现自养生长,工程酿酒酵母乙醇得率提高10%[47][50] 产业化应用方向 - 燃料领域:乙醇、生物柴油(微藻脂质转化)商业化生产规模已达万吨级[4][45] - 化学品合成:Evonik-西门子合作年产2万吨丙酸/丁酸,首钢朗泽项目年产值1.2亿元[40] - 高附加值产品:微藻合成PUFAs替代鱼油,蓝细菌生产异戊二烯等生物基材料[46][43] 未来技术挑战 - 酶催化效率:天然RuBisCO固碳速率仅20-30个/秒,需进一步定向进化[13][35] - 能量供给优化:自养微生物ATP产率低限制生长速率,需开发电子传递新机制[36][37] - 规模化瓶颈:多数固碳途径处于概念验证阶段,需降低培养成本(如微藻抗盐改造)[44][51]
中科院青岛能源所李福利等:以CO2为原料的第三代生物炼制现状
合成生物学与绿色生物制造·2025-07-14 21:29