自动驾驶技术发展现状 - BEV感知方案已完全成熟并广泛应用于量产车型 基于BEV的动态感知、静态感知、OCC感知均实现技术落地 [16][24] - 端到端方案仍处于验证阶段 实际效果未显著超越传统两阶段模型 存在数据收集难度大、训练成本高等实操问题 [11][31] - 行业面临的核心挑战是corner case处理能力 非结构化道路、复杂路口等场景通过率不足99% [16][24] 新兴技术路线争议 VLA/VLM技术 - 看好派:认为VLA通过大模型推理能力实现场景理解 可突破传统规则引擎的迭代瓶颈 是下一代技术重点方向 [2][28] - 质疑派:指出当前VLA基座多依赖开源模型魔改 缺乏专用预训练体系 且车端算力限制导致性能与延迟难以平衡 [1][27] - 中立派:认为对话功能仅提供情绪价值 控车逻辑需独立设计 量产可行性存在但效果待验证 [3][18] 关键技术突破方向 - 世界模型:三大应用场景包括预训练、仿真数据生成、端侧推理 目前数据生成领域已取得阶段性成果 [6][33] - 强化学习:仿真精度是核心瓶颈 若能解决sim2real域差距 配合端到端架构将实现性能飞跃 [6][32] - 扩散模型:适配多模态轨迹生成特性 地平线DiffusionDrive方案已实现实时性突破 [7][26] 行业竞争格局演变 - 数据闭环能力成为竞争焦点 头部公司重点构建AI驱动的数据流水线 涵盖采集、清洗、标注全流程自动化 [20][22] - 仿真技术呈现两极分化:L4企业侧重世界模型构建安全验证体系 L2+厂商聚焦VLA提升泛化能力 [18][30] - 芯片算力制约技术落地 7B参数以下模型成主流 量化加速与轻量化算法需求迫切 [27][28] 学术与产业协同 - 学术界研究滞后于产业落地 BEV从论文发表到量产应用耗时2年 当前VLA等技术尚未形成理论共识 [31][9] - 产学研割裂问题突出 工业界数据壁垒导致学术界缺乏真实场景验证数据集 [13][31] - 3D高斯等新型表征方法有望重构世界模型架构 球谐函数替换等基础研究具备潜力 [6][33] 技术路线选择建议 - 短期优先完善一站式端到端方案 长期需突破鲁棒性瓶颈以实现L4 [18][26] - 平价车型可采用BEV+蒸馏方案过渡 等待芯片成本下降支撑大模型部署 [24][26] - 自动驾驶与具身智能技术互通 建议选择迁移性强的研究方向 [34][22]
可以留意一下10位业内人士如何看VLA
理想TOP2·2025-07-21 22:36