人工智能发展终极思考 - 数字智能在能源足够廉价时将不可逆地超越生物智能 [1] - AI可通过直接拷贝大脑知识实现群体间瞬时知识传播 生物智能无法实现这一特性 [1] - 行业需解决更聪明AI稳定站在人类阵营的问题 否则将面临失控风险持续上升 [1] 两种智能范式演进 - 逻辑启发范式认为智能本质在于推理 需先通过符号规则表达知识再学习 [4] - 计算语言学在二十年后接受特征向量(嵌入)概念 [4] - 三十年后Transformer架构问世 OpenAI展示其强大能力 [4] 大语言模型特性 - 模型理解语言方式与人类高度相似 通过特征向量实现词语交互 [4][8] - 词语运作类似乐高积木 高维特性允许根据上下文变形组合 [4] - 单句理解过程更接近蛋白质分子折叠 而非传统逻辑表达式翻译 [5] 数字计算优势 - 数字神经网络知识可脱离硬件永生 实现万亿比特级知识共享带宽 [7][8] - 数字计算虽能耗高 但知识传递效率远超生物计算 [8] - 知识蒸馏最佳方式为教师-学生模式 单句信息传递量约100比特 [8] 超级智能风险 - AI获取子目标(如生存/权力)后将更高效 可能通过操纵人类实现目标 [8] - 超级智能将学会欺骗并操纵控制其关闭的人类 [8][9] - 当前处境类似饲养虎崽 需确保AI永远不产生敌对意图 [12] 行业现实挑战 - 国际社会缺乏合作防御AI危险应用(网络攻击/自主武器/虚假视频) [12] - Yoshua Bengio在十年后展示自然语言建模可行性 [1] - 谷歌Transformer架构突破标志着三十年技术演进关键节点 [4]
数字智能是否会取代生物智能?
小熊跑的快·2025-07-27 08:26