Workflow
忘掉《Her》吧,《记忆碎片》才是 LLM Agent 的必修课
Founder Park·2025-07-29 16:05

行业趋势演变 - AI行业叙事从Chatbot(聊天机器人)转向Agent(智能体)成为主流 讨论焦点从"意图识别"和"多轮对话"变为"任务分解"、"工具调用"和"自主规划" 行业热度堪比2016年移动互联网爆发期 [4] - 电影《Her》定义了Chatbot范式的终极形态 而《记忆碎片》的主角莱纳德被视为Agent的完美隐喻 展示系统如何在信息不完整环境下为目标思考与行动 [5] Agent系统架构 - 上下文工程是围绕LLM有限注意力窗口设计的信息管理技术栈 目标是为每个决策点提供恰到好处的信息 决定Agent成败 [5] - 莱纳德的记忆系统对应LLM三大特征:长期记忆如同训练数据(静态知识库) 短期记忆如同上下文窗口(15分钟记忆限制) 行动驱动类似Agent任务导向 [9] 上下文工程三大支柱 外部知识管理 - 拍立得照片系统对应RAG技术 实现知识管理闭环:选择性记录任务关键信息 而非存储所有数据 避免检索时信息过载 [17][20] - 完整流程包括信息采集固化(拍照)、上下文标注(背面笔记)、按需调用(匹配检索) 体现RAG核心价值 [23] 上下文提炼结构化 - 将信息从照片升级到纹身 代表信息提炼压缩过程 只保留经过验证的核心断言(如"事实5") 并物理结构化确保读取优先级 [22][29] - Agent需成为信息炼金术士 对冗长信息进行压缩总结 在有限Token预算内最大化信息密度 避免"大海捞针"困境 [25] 分层记忆管理 - 三层架构:核心任务层(不可变纹身)、情景工作层(可读写照片)、瞬时处理层(易失性大脑记忆) 实现高效记忆调度 [30] - 需明确定义信息层级 区分宪法级指令、任务日志和临时缓存 防止Agent迷失在海量操作日志中 [28] Agent系统风险 - 上下文投毒风险:外部恶意输入可能导致Agent将错误信息当作真理输出 呈现"垃圾进真理出"现象 [32] - 自我强化认知牢笼:Agent在多步任务中可能将前序错误结论当作事实 缺乏独立审查机制导致偏差放大 [33][34] 系统优化方向 - 缺失反思模块是当前Agent核心缺陷 需建立验证机制比对行动结果与预期差距 生成误差报告指导后续行动 [35] - 构建可靠行动系统比单纯追求自主性更重要 需防止创造高效但永不怀疑的"莱纳德军队" [36]