Workflow
世界GaN日|GaN可能从哪些细分应用市场挑战SiC
半导体芯闻·2025-08-06 19:22

氮化镓技术背景与材料特性 - 世界氮化镓日定为每年7月31日,源于氮(N)和镓(Ga)在元素周期表中的排序(第7号和第31号元素),彰显其战略科技地位 [1] - 氮化镓(GaN)与碳化硅(SiC)同属化合物半导体,材料性能直接影响电子器件特性,SiC MOSFET优势在于更大功率,GaN HEMT优势在于更高频率 [2][3] - 氮化镓HEMT器件结构复杂,需在硅衬底上生长多层外延(如NL成核层、SRL超晶格层等),材料工艺比晶圆加工更关键 [6][7] 氮化镓应用市场分析 汽车领域 - 主驱动逆变器中SiC因耐高压、高温及短路保护能力(>3微秒)占据优势,GaN目前短路能力低于500ns,短期内难以替代 [10] - 车载充电器(OBC)和DC-DC转换器是GaN重点方向,已有厂商推出11kW/800V方案,650V以下电压区间具备成本和体积优势 [10] - 车规级可靠性是GaN主要障碍,异质外延工艺缺陷需通过器件设计和测试标准完善解决 [11] 消费电子与AI服务器 - GaN在消费电子快充市场快速普及,英诺赛科出货量达6.6亿颗,2024年营收8.28亿元,全球份额第一 [12][13] - AI服务器电源需求功率密度达100 W/in³,GaN高频特性显著提升效率(如纳微半导体方案峰值效率96.52%) [18] 人形机器人与光储充系统 - 人形机器人关节电机需0.1秒内完成500rpm转速切换,GaN器件开关速度优于硅基MOSFET,上海智元已在3个关键关节应用GaN芯片 [21][23] - 光伏和储能场景中GaN无需短路保护能力,英诺赛科2kW微型逆变器方案功率密度40W/in³,充电效率提升2倍 [24] 技术挑战与成本结构 - 硅基GaN外延面临晶格/热失配问题,高压器件需更厚外延层,缺陷抑制难度大 [25] - GaN成本优势在于硅衬底成本低,但需平衡衬底、晶圆制造、封装、良率等环节,与SiC竞争关键在产业链协同 [25] 行业动态与IPF 2025大会 - IPF 2025为国内宽禁带半导体最高规格会议,聚焦GaN与SiC产业链交锋,郝跃院士将报告宽禁带器件进展,英诺赛科董事长骆薇薇等重磅嘉宾出席 [34][35] - 大会议程涵盖材料、器件设计、应用创新(如AI数据中心、车用模块等),设置GaN与SiC协同发展圆桌论坛 [36][38][40][42]