Workflow
光子芯片,20年!
半导体行业观察·2025-08-07 09:48

光子集成电路(PIC)发展现状 - 光子集成电路利用光处理信息,具有超高带宽、低延迟特性,正成为电子技术的互补方案[2][4] - PIC执行器数量呈现每两年翻一番的指数增长趋势,预计6年内从数百个增至10^5个[6][13] - 当前大规模集成(LSI)工艺芯片已实现500-20,000个执行器,2028年将进入超大规模集成(VLSI)阶段[13][16] 技术架构与突破 - 光子处理器分为专用集成电路(ASPIC)、交换机、前馈网格和通用处理器四大类,最高集成密度达12,480个执行器[10][12][19] - 马赫-曾德尔干涉仪执行器密度约20个/mm²,而相控阵和相变材料可达200个/mm²[22] - 绝缘体上硅(SOI)和氮化硅(SiN)成为主流材料平台,混合集成薄膜铌酸锂等新材料可突破现有局限[22] 关键性能指标进展 - 可编程单元(PUC)损耗随执行器数量增加而降低,超过10^3执行器的处理器PUC损耗为0.3-0.5dB[20] - 热光执行器能效显著提升,功耗降至亚毫瓦级,但热稳定系统仍是主要能耗来源[21] - 光子处理器单位面积功耗远低于电子芯片,后者可达数百瓦/mm²[21] 主要应用领域 - 5G/6G通信领域:微波光子学技术可提供可调谐、宽带操作优势,波束成形网络需10^3-10^4执行器[26][28] - 数据中心光互连:需解决1dB损耗阈值,未来128-256端口交换机需集成10^4-10^5执行器[30][31] - 光计算应用:矩阵乘法器需处理256×256以上矩阵,当前光子方案集成度仍比电子低4-5个数量级[33][34] 行业挑战与趋势 - 制造工艺需优化光波导损耗和芯片耦合效率,实现10^4执行器集成需PUC损耗<0.15dB[20][25] - 电子-光子协同设计成为关键,3D集成和新型封装技术可提升系统级性能[23][25] - 软件定义光子学兴起,需开发适配光路交换的生态系统以发挥高速重构优势[32][37]