Workflow
国泰海通|产业:AI Agent的技术演进与产业洞察
国泰海通证券研究·2025-08-08 17:24

AI Agent技术演进与产业洞察 核心观点 - AI Agent的未来发展核心在于以大语言模型(LLM)为"大脑"的范式革命,其商业价值通过解决行业痛点的垂直应用和开发平台体现 [1] - AI Agent正在重塑软件开发与人机交互范式,从传统架构演进为以LLM为核心的现代范式,具备自主规划、环境感知与工具调用能力 [1] - 多智能体协作时代开启,多个专业Agent协同解决宏大问题,驱动从上游基础模型到下游应用的完整产业链形成 [1] 技术架构演进 - 传统Agent架构(如审议式和反应式)受限于硬件和预编程规则,自主性与适应性有限 [2] - 2017年Transformer架构的出现为LLM崛起奠定基础,彻底重塑AI Agent设计理念 [2] - 现代LLM-based Agent核心架构由三大模块构成:大脑(LLM)、感知和行动 [2] - LLM-MAS(大语言模型多智能体系统)通过多个专业Agent协作/竞争,解决单个Agent处理超复杂任务的局限性 [2] 产业链格局 - 上游由少数科技巨头掌控,提供基础大模型和算力,主导交互协议制定,抢占生态话语权 [3] - 中游涌现开源开发框架和商业平台,通过低/无代码界面显著降低开发门槛 [3] - 下游应用分为两类: - 通用型Agent:自主完成复杂多步任务 - 垂直型Agent:深度融合行业知识(软件开发/法律/金融/医疗等),展现巨大商业价值 [3] 发展挑战与未来方向 - 当前面临LLM规划推理能力不足、上下文窗口受限、记忆瓶颈、多Agent协同及评估困境等挑战 [3] - 未来依赖基础LLM持续进化、多模态感知能力普及、软硬件生态重构,向AGI迈进 [3]