AI工具使用体验 - 产品经理Franz在2022年11月ChatGPT发布后开始接触AI工具 但初期仅将其作为百科全书式问答工具 对实际应用场景感到茫然 [7] - 2024年AI Agent概念兴起后 尝试搭建私人音乐AI Agent 预期实现基于天气/时间/偏好的智能音乐推荐功能 [10][15] - 实际搭建过程耗时10天 远超最初"最多3天"的预期 最终成果未完全实现预期功能 [12][30] 工具实践挑战 - 使用n8n工作流自动化工具时发现需要代码能力 DeepSeek提供的代码方案存在节点缺失/格式不匹配/无法执行等实操问题 [19][23] - 教学视频普遍省略修改调试细节 5分钟演示内容实际需3小时修正 小白用户缺乏代码修改能力成为主要瓶颈 [24] - 尝试切换至Dify等宣称"0代码"工具 但面临外部软件支持有限/系统响应延迟近2秒等新问题 最终回归n8n [27] 行业生态现状 - 全球AI市场规模达6382亿美元 2023-2024年复合增长率19.1% 各行业先驱者积极尝试应用AI解决问题 [32] - AI编程工具持续涌现 Vibe coding等概念推动氛围编程发展 但工具更迭过快导致用户学习成本增加 [27] - AI暂时无法取代人类工作 但掌握AI能力已成为新时代关键技能 行业处于互联网早期的野蛮生长阶段 [32] 用户行为模式 - 用户典型路径包含好奇-上手-走弯路-复盘四个阶段 容易被"零代码""一键生成"等宣传口号误导 [2] - 实际使用中存在提示-修改代码的循环操作 单问题修改次数可达上百次 调试过程消耗主要时间 [29] - 社交媒体AI作品传播形成peer pressure 普通用户易陷入工具选择困难与实操困境 [8][28] 技术能力边界 - AI工具在思考全面性/代码生成量方面表现突出 5分钟可生成数百行代码 但复杂任务实现效率事倍功半 [32] - 多工具对比测试显示 DeepSeek/豆包/Cursor提供的解决方案高度雷同 均存在实际执行缺陷 [28] - 当前AI技术仍存在明显局限性 需要用户具备基础代码能力进行手动修正补足 [29]
被AI「摩擦」的十天:一个普通人的上手记
36氪·2025-08-15 18:44