Deep Research功能概述 - Deep Research能显著提升AI产品GTM效率,将数小时工作压缩至几分钟[2] - 主流AI产品如ChatGPT、Gemini、Perplexity均已上线该功能[2] - 需通过高质量提示词和背景信息指导才能产出定制化研究成果[2] 使用技巧 技巧1:信息源质量控制 - AI可能误用社交媒体观点或过时数据,需人工指定优先来源类型(如政府数据)[7][12] - 可要求AI在报告中添加来源概述表,列明数据年份、用途及替代来源差异[8][9] 技巧2:背景信息输入 - 需主动提供公司运营模式、目标及限制条件等背景信息[13] - 可创建项目档案存储共享背景,避免重复输入[14] - 建议使用GPT-5/Claude Opus生成背景信息需求清单[18] 技巧3:研究计划审核 - Gemini会主动提供研究计划,其他工具需在提示词中明确要求[20][22] - 审核重点包括:内容覆盖度、方法合理性及AI假设验证[23] 技巧4:报告格式优化 - 默认生成报告可读性差,需指定摘要前置、关键见解优先等结构化格式[24] - 推荐使用金字塔原则:结论先行,论据支撑[31] 工具选择策略 - ChatGPT为最佳通用工具,尤其GPT-5版本具备深度分析和Agent Mode交互优势[38][39] - Gemini适合备用,Perplexity擅长特定网站/论坛研究,Claude/Grok输出简洁[40][42] - 工具对比维度包括定价限制、研究规划、上下文处理等7项指标[43] GTM实战用例 用例1:内部项目指南 - 可快速生成营销归因模型等复杂项目实施手册,含方法对比及分步SQL代码[46][47] - 需明确公司技术栈(如Salesforce+Snowflake)以获取定制方案[47] 用例2:竞品广告分析 - 通过Agent Mode抓取LinkedIn广告库50+案例,分析定位策略及CTA设计[51][54] - 输出含具体广告链接及截图,覆盖广告类型、受众画像等维度[56] 用例3:网页审计 - 结合竞品分析与行业最佳实践,提出改进优先级排序及文案示例[63] - Agent Mode可交互验证页面元素,避免静态分析误差[64] 用例4:产品功能对比 - 基于官方文档生成竞品功能差距分析,需验证信息时效性[67][68] - 可延伸生成竞争力文案,如客户比较页面设计建议[69] 用例5:国际市场评估 - 采用两阶段法:先由GPT-5建立评估框架,再通过Deep Research生成国家排名[72][75] - 关键数据源包括政府统计(如Eurostat)和企业规模数据(如UK Business Population)[9][76] 扩展应用场景 - 使用Perplexity监测社交媒体反馈,或通过Agent Mode记录竞品用户流程[80] - 生成行业增长技巧报告并与推理模型协作筛选适用方案[80]
很多创业者都没意识到,Deep Research 也是做 Go-to-Market 的利器
Founder Park·2025-08-18 16:27