Workflow
深度|OpenAI Agent团队:未来属于单一的、无所不知的超级Agent,而不是功能割裂的工具集合,所有技能都存在着正向迁移
Z Potentials·2025-08-29 11:52

核心观点 - OpenAI通过合并Deep Research和Operator项目开发出新型AI Agent 能够执行长达一小时复杂任务 具备多工具协同和状态共享能力 开启人机协作新范式 [2][5][6][7][19][24][42] 技术架构与能力 - Agent配备虚拟计算机环境 集成文本浏览器 GUI浏览器 终端和API调用工具 所有工具共享状态 实现跨工具无缝切换 [5][6][24] - 支持运行代码 分析文件 创建电子表格和幻灯片 访问GitHub Google Drive等私有服务 [5][6][11] - 单次任务推理时间达28分钟至1小时 突破传统上下文长度限制 [19][20][21] - 采用强化学习训练 在数千个虚拟机上进行实验 模型自主学会工具使用策略 [7][24][26][45] 产品演进路径 - 2024年1月先后发布Operator(执行网页交互任务)和Deep Research(信息综合研究) 两周后意识到功能互补性 [9] - 文本浏览器擅长高效阅读但缺乏交互 GUI浏览器擅长点击操作但文本处理弱 合并后实现能力互补 [9][10] - 新增终端 图片生成 API调用等工具 形成完整工具生态 [11][12][13] 应用场景与用例 - 设计保持开放性 预期出现未预见用例 类似Deep Research曾被用于代码搜索的意外场景 [14][40] - 实际用例包括:从实验日志提取数据制作幻灯片 研究古代DNA生成报告 网上购物比价 创建财务模型估算公司估值 [16][18] - 同时适用于消费级和企业级场景 目标用户为"专业消费者"(prosumer)[15] 人机交互特性 - 支持双向实时交互 用户可中途打断 纠正指令或授权登录 Agent也可主动请求澄清 [7][22] - 提供计算机界面实时观察Agent操作 任务完成后可追溯修改 用户可接管环境手动操作 [23] - 交互模式向"幕僚长"形态演进 未来可能实现主动服务 [42][43] 训练方法与扩展性 - 强化学习数据效率极高 高质量小规模数据集即可训练 数据量较预训练可忽略不计 [44] - 计算资源与训练数据量增长约十万倍 使"World of Bits"愿景成为可能 [45] - 所有技能存在正向迁移 单一基础模型比专用子Agent更具优势 [44] 性能表现 - 在DataScienceBench评估中超越人类基准 具备超人级研究能力 [46] - 点击准确度大幅提升 表单填写可靠性显著改善 日期选择仍存挑战 [46][47][48] 开发团队构成 - 由原Deep Research团队(3-4人)和Operator团队(6-8人)合并而成 [30][33][34] - 研究团队与应用团队深度协作 从用例反向定义产品需求 [34][35] - 跨部门合作涉及安全 治理 法律 研究 工程等多团队 [28] 安全风险管控 - 因具备写入能力 存在外部副作用风险 安全训练为核心开发环节 [26][27] - 采用监控系统实时检测异常行为 类似杀毒软件机制 [27] - 重点防范生物安全风险 进行数周红队测试确保不被用于有害目的 [29]