Workflow
大模型,为何搞不定软件开发?根本原因就在…
程序员的那些事·2025-09-08 08:57

文章核心观点 - 大语言模型在软件开发中存在根本性局限 无法维持清晰的思维模型 导致无法处理复杂软件开发任务[5][8][9][14] - 人类工程师通过构建和验证思维模型来迭代开发 而LLM缺乏这种能力 常陷入无限混乱或推倒重来[7][9][14] - 尽管LLM在代码生成和简单任务上表现良好 但在复杂项目中无法维持足够上下文来迭代可行方案[15][16] - 未来人机协作是趋势 但目前LLM只能作为辅助工具 主导权仍需人类工程师掌握[17] 软件开发中的人类优势 - 资深工程师通过四步循环开展工作:构建需求模型 编写实现代码 建立代码行为认知 找出差异并修正[7][10] - 人类能实时验证工作成果 测试失败时能对照思维模型决定修正方向或收集更多数据[9] - 人类具备上下文切换能力 既能纵览全局忽略细节 又能深入局部攻坚 且不会无限制扩展思维缓存区[12] - 人类开发者即使遗漏逻辑细节 也属于局部失误而非根本性误判 且能通过讨论理解需求痛点[22] LLM的技术局限 - LLM无法同时维护两个相似思维模型 无法识别差异 更无法判断该修改代码还是需求[14] - 存在三大硬伤:语境盲区(对缺失上下文束手无策) 近因偏见(过度关注最近信息) 幻觉频发(虚构不存在内容)[13][20] - 测试失败时往往暴露系统底层逻辑的根本性缺陷 但LLM只能通过"打补丁"方式让测试通过 抓不住关键点[22] - 缺乏对系统运作方式的完整认知 表面代码工整但未抓住需求精髓 光靠堆算力难以解决[22] 发展前景与应用价值 - LLM对工程师有价值 能快速生成代码 擅长梳理需求文档 对明确简单任务能一气呵成[15] - 进化速度惊人:2022年ChatGPT水平只有现在的十分之一 按此速度五年后可能搞定软件开发[21] - 体验糟糕却被持续使用的技术往往创造不可替代价值 骂声越响迭代越快[19][21] - 未来人机协作开发是大势所趋 但现阶段方向盘必须握在人类手中[17]