技术突破 - 腾讯混元团队提出Direct-Align和SRPO两项创新方法 显著提升AI图像生成质量 人工评估真实感评分从8.2%提升至38.9% 美学评分从9.8%提升至40.5% [2][5][17] - Direct-Align通过预定义噪声先验实现任意时间步图像恢复 在仅5%去噪进度阶段即可恢复图像粗略结构 解决传统方法梯度爆炸问题 [9][10][11] - SRPO将奖励定义为文本条件信号 通过正负面提示词计算相对奖励差值 实现无需额外数据的在线偏好调整 [5][14][16] 性能表现 - SRPO在HPDv2基准测试中全面领先 自动评估指标Aesthetic Score达6.194 PickScore达23.040 显著优于ReFL DRaFT等方法 [17][18] - 仅需10分钟训练即在32块H20上收敛 训练效率远超DanceGRPO(480 GPU小时)和ReFL(16 GPU小时) [1][18][19] - 通过添加"Realistic photo"控制词 模型生成图像真实感提升3.7倍 美学质量提升3.1倍 [16] 技术优势 - 全扩散轨迹优化突破现有方法局限 避免仅在后25%时间步训练导致的奖励黑客问题(如HPSv2偏好红色调 PickScore偏好紫色图像) [8][13] - 控制词效果与训练集频率相关 高频词如"painting"效果最佳 低频词需组合使用 [16] - 相比DanceGRPO方法 SRPO在保持高美学质量的同时避免产生过度光泽感和边缘高光等不良伪影 [18] 行业影响 - 开发者评价SRPO为下一代RLHF(人类反馈强化学习)技术 展现其在对齐人类偏好方面的突破性潜力 [6] - 该方法在FLUX1.dev模型上实现突破 表现超越最新开源版本FLUX.1.Krea [19]
腾讯混元升级AI绘画微调范式,在整个扩散轨迹上优化,人工评估分数提升300%