文章核心观点 - DeepSeek-R1推理模型研究论文登上Nature封面 成为中国首个登上该期刊封面的大模型研究 标志着中国AI技术在国际科学界获得最高认可 [1] - DeepSeek通过独立同行评审打破行业空白 其公开透明的模式受到Nature高度评价 为AI模型提供更高的透明度和可重复性标准 [1][2][3] - DeepSeek-R1以仅29.4万美元的训练成本实现显著降本 相比其他推理模型动辄上千万美元的花费具有显著成本优势 [3] - DeepSeek-V3.1的发布采用针对国产芯片设计的UE8M0 FP8参数精度 推动软硬协同生态建设 带动国产算力芯片发展 [6][7] 技术突破与学术认可 - DeepSeek-R1是全球首个经过完整同行评审并发表于Nature的主流大语言模型研究 历时半年通过8位外部专家评审 [1][2] - 论文全文64页 首次披露训练成本和技术细节 包括数据来源 训练方法及安全性评估 并对"蒸馏"质疑作出正面回应 [3][4] - 训练成本仅29.4万美元(约209万元人民币) 使用512张H800 GPU训练80小时 以每GPU小时2美元租赁价格计算 [3] - Nature社论强调该研究填补主流大模型缺乏独立同行评审的空白 Hugging Face专家评价其为行业建立公开分享研发过程的先例 [1][3] 产品演进与算力生态 - DeepSeek-V3.1采用混合推理架构 提升思考效率和智能体能力 通过后训练优化在工具使用与智能体任务中表现提升 [6] - V3.1使用UE8M0 FP8参数精度 针对下一代国产芯片设计 表明未来训练与推理将更多应用国产AI芯片 [6][7] - FP8参数精度使国产ASIC芯片在成熟制程(12-28nm)接近英伟达GPU算力精度 软硬协同成为AI新范式 [7] - 国产大模型拥抱FP8算力精度成为技术趋势 通过软硬件协同实现数量级性能提升 推动国产算力芯片变革 [7] 行业影响与市场反应 - DeepSeek从预印本到Nature封面的"学术跃迁" 为AI模型建立透明度和可重复性标准 [2] - 国产芯片算力股因DeepSeek支持国产AI芯片的表态出现股价飙升 [6] - R2研发进程可能受算力限制影响 但V3.1升级引发对R2发布的猜测 [5][6]
DeepSeek,打破历史!中国AI的“Nature时刻”
证券时报·2025-09-18 12:51