玻璃基板的核心优势 - 玻璃基板非常平坦,热膨胀比有机基板更低,简化了光刻工艺,并显著改善了多芯片封装的翘曲问题 [2] - 相对于有机芯基板,玻璃基板为高频高速器件提供了极低的传输损耗 [2] - 玻璃比硅中介层便宜得多,翘曲度降低了50%,位置精度提高了35%,更容易实现线宽和间距小于2微米的重分布层 [2] - 玻璃在通信波长下的透明度使得波导能够嵌入堆叠结构中,用于6G应用,超薄(小于100微米)玻璃可制成700 x 700毫米的大尺寸 [2] - 玻璃介电常数远低于硅(2.8 vs 12),且正切损耗较低,传输损耗比硅低几个数量级,大大提高了信号完整性 [3] - 玻璃的用途灵活,可用作载体、嵌入元件的核心基板、3D堆叠材料,或用于传感器和MEMS的密封腔体,其热膨胀系数可在3至10 ppm/°C之间调整,与硅或PCB兼容性更好 [2] 玻璃在6G及高频应用中的潜力 - 玻璃是6G无线通信网络的理想选择,必须支持>100 GHz的数据速率,堆叠玻璃中的异质集成可将高频前端芯片与低损耗互连集成到大规模天线阵列中 [5] - 佐治亚理工学院的研究展示了在玻璃基板上堆叠2英寸(50 x 50毫米)芯片的工艺,集成菊花链结构,玻璃层间对准度达3微米,电气性能高达220 GHz时损耗仅为0.3 dB [5] - 堆叠玻璃面板采用倒装芯片键合技术,使用激光加工形成用于信号传输和散热的玻璃通孔,填充高达130 µm、间距达100 µm的V形通孔,展现出作为6G应用3D堆叠方法的潜力 [8] 玻璃通孔制造工艺进展 - 激光诱导深蚀刻是玻璃通孔制造的领先工艺,首先对玻璃进行激光改性,使其蚀刻速率比未处理区域高出100倍,然后使用氢氟酸进行湿法蚀刻,可形成小至3µm、间距5µm的通孔 [10] - Yield Engineering Systems开发了自动化湿法蚀刻设备,可处理多达12块510 x 515毫米玻璃面板,在130°C下蚀刻速率高达80µm/小时,能制造纵横比4:1至20:1的通孔 [10][11] - 各公司探索更环保方案,东京大学使用超短脉冲深紫外激光在100µm厚玻璃上加工出6µm宽、25µm间距的孔,最小化热影响,实现精确清洁加工 [13][14] - 高深宽比TGV的深度最大可达260µm,深宽比在20:1至25:1之间 [16] 研发与良率提升技术 - 仿真和原子建模成为预测玻璃基板上界面行为的关键工具,GPU加速和机器学习算法能构建复杂系统的真实模型,为制造提供方向 [18] - Onto Innovation开发了预测良率模型,结合离线量测和机器学习算法,快速减少510 x 515毫米面板上的套刻缺陷,加速FOPLP良率提升 [18][19] - 面板级套刻误差校正有四种方法:全局、基于区域、基于芯片和逐点校正,基于点的校正可在保持高良率的同时减少对产量的影响 [19] - 通过模拟确定最佳工艺参数,并利用图表直方图及早发现叠对问题,加速认证和工艺优化 [21] 玻璃切割与微裂纹防护 - 玻璃切割过程中微裂纹是主要问题,Disco研究表明,双刀片切割比激光单片方法产生更多边缘碎裂但边缘更光滑,层压层能提高芯片强度 [22] - 有限元建模表明,边缘崩裂由切割过程中应力最集中的微观缺陷引起,当叠层延伸到分割区域边缘时会出现SeWaRe缺陷,可通过回拉法移除边缘叠层来消除 [22] - 索尼探索了切割好的基板嵌入有机树脂的新方法,提供边缘保护,该单片玻璃芯嵌入工艺能实现单面加工并提供卓越的基板保护 [24] 玻璃上的混合键合 - 玻璃的平整度和定位精度使其可以进行铜-铜混合键合,玻璃芯基板是对现有材料的补充,可使用二氧化硅电介质制造更小的RDL线路和间距 [26] - 欣兴电子演示了器件与有机芯和玻璃芯基板的倒装芯片键合,混合键合在玻璃上的翘曲度略大于微凸块,但均在可接受范围内,建议键合到高CTE的PCB时使用高CTE玻璃 [26]
玻璃基板,一步之遥
半导体行业观察·2025-09-20 09:55