人形与具身智能产业何以叩响“Scaling Law”之门?
机器人大讲堂·2025-09-24 19:09

行业阶段与核心矛盾 - 人形机器人行业正从主题炒作迈向产业趋势投资前期,海外及国内企业已开启小批量量产 [1] - 行业核心矛盾并非能否出货,而是能否形成可持续的产业飞轮,当前交付多集中于科研、教育等ToG领域,本体企业主要扮演硬件卖铲人角色 [1] - 行业真正转折点在于机器人大脑的Scaling Law时刻,即智能随数据量和模型规模呈非线性提升,从而突破场景泛化能力瓶颈 [1] Scaling Law的挑战与瓶颈 - 硬件端成本高且方案未定型,以特斯拉Optimus Gen1为例,当前BOM成本仍处高位,目标未来降至2万美元/台 [3] - 行业缺乏统一技术标准,行星滚柱丝杠与微型丝杠、轴向磁通电机与无框力矩电机等方案并存,延缓了规模化降本进程 [3] - 软件端缺乏机器人版ChatGPT,机器人大脑面临运动数据模态复杂、真实场景采集成本高、专用场景数据缺失等数据困境 [3] 技术路线演进 - 双系统分层VLA(大小脑架构)凭借均衡性成为当前工程落地最优解,端到端VLA被视为通用AGI的终极方向 [4][5] - Figure的Helix系统采用快慢双系统协同,7B参数慢系统处理认知任务,80M参数快系统以200Hz高频实现毫秒级实时控制 [7] - 若未来算力芯片效率提升且低成本数据生成技术突破,端到端VLA仍是终极方向,但大小脑路线将作为行业过渡桥梁 [7] 商业化路径与场景落地 - 商业化遵循从ToG到ToB再到ToC的路径,当前ToG场景已实现小规模落地,国内本体价格下探至3.99万元 [8] - ToB场景成为关键战场,服装制造业是典型案例,全球缝纫工人约6000万人,年人工开支超万亿人民币,存在刚性替代需求 [8][9] - 大模型端到端架构改变现状,无需手动编程即可通过视觉识别面料特性,杰克科技方案已能解决单层面料分离难题,拟推进批量化应用 [9] - 2030年前后人形机器人将全面进入B端装配、质检、柔性搬运环节,2035年有望在家庭场景实现护理、家务协作 [9] 资本流向与生态建设 - 行业资本从重硬件本体转向重软件大脑,谷歌、英伟达等国外科技大厂已率先布局具身智能大模型 [11] - 2024年下半年起国内具身智能大模型赛道迎来融资潮,千寻智能2025年3月完成5.28亿元Pre-A轮融资,穹彻智能累计获数亿元融资 [11] - 平台化企业开始补位行业生态短板,仙工智能等企业正以控制器为核心搭建机器人大脑开发平台,连接本体厂商与零部件企业以提升效率 [11] 未来行业展望 - 行业终极目标是复刻新能源车、智能手机的非线性增长曲线,关键在于机器人大脑的Scaling Law时刻 [13] - 若未来两年内头部企业能在简单工业场景验证智能泛化能力并形成成熟硬件方案,行业将进入规模化增长阶段 [13]