Workflow
开源对机器人的价值,远超想象丨唐文斌深度对谈抱抱脸联创

文章核心观点 - 当前机器人研究面临“仿真到现实”的巨大鸿沟,许多模型在模拟器中表现完美但在现实世界中彻底失灵[2] - Dexmal与Hugging Face联合推出RoboChallengeai平台,旨在建立一个开放、统一、可复现的真实世界机器人评测基准[6][45] - 开源是推动物理智能/具身智能领域发展的关键驱动力,其重要性在机器人领域甚至超过在大语言模型中的作用[10][19][26] 行业痛点与挑战 - 机器人领域缺乏统一、开放且可复现的基准系统来公平比较不同方法、策略和模型[44] - 大多数现有基准仍基于仿真环境,由于“仿真到现实”差距,无法真实反映模型在现实中的表现[42][50] - 机器人评测面临硬件访问限制、环境变量控制、模型部署等多重技术难题[36][52][53] RoboChallengeai平台解决方案 - 平台首次实现全球研究者在物理环境中远程测试模型,通过独创的Remote Robot技术,用户仅通过API即可控制真实机器人[8][53] - 采用模型留在用户本地的部署方式,用户通过HTTP API访问平台摄像头和机器人进行远程测试,无需上传模型[53] - 以Table 30作为起点基准测试,提供30个任务,每个任务约1000个episodes的微调数据供开发者使用[53][61][62] 开源在具身智能中的作用 - AI领域几乎所有重大突破都基于开源,transformer架构及其演化都是全球开源社区协作的产物[10][11][12] - 开源使模型能够被应用到不同类型机器人上,实现“共同大脑”驱动各种机器人的新局面[22][23] - 本地化运行的嵌入式模型几乎都是开源模型,开源与硬件开发自然结合成为机器人领域演化关键动力[25][26] 平台发展愿景与规划 - 平台遵循完全开放策略,提供免费评测服务,任何人都可提交模型并获得排名[78][79] - 未来将扩展评测维度至多任务、长时任务、交互任务等更复杂场景[81] - 三到五年内,具身智能研究将向执行更长时间任务发展,基准测试随之演化[82] 公司背景与行业动态 - Dexmal成立仅20天即完成2亿元天使轮融资,投资方包括君联资本、九坤创投和启明创投[83][84] - 团队核心成员拥有超过十年AI原生产品与落地经验,在仓储场景已交付超过一万辆AMR/AGV[85] - 公司专注于将大模型和AI技术引入机器人领域,探索具身智能新赛道[86]