理想智驾是参考特斯拉, 不是跟随特斯拉已经有了很强的证据
理想TOP2·2025-10-24 12:48

理想智驾与特斯拉的技术发展关系 - 理想智驾从V10-11时期的跟随特斯拉转变为V12及以后的参考特斯拉,跟随尺度显著降低[2] - 转变的核心锚点是理想在VLM后进行了大量特斯拉未公开提及的原始创新,其VLA创新度达到DeepSeek MoE水平[2] - 理想VLM由快系统(系统一)和慢系统(系统二)组成,快系统部分可视为跟随特斯拉,但慢系统部分为理想独立创新,因为特斯拉直到ICCV 2025才提及该概念,而理想在2024年X月已发表相关论文[3] - 理想VLM到VLA的演进是基于VLM的自然发展路线,而非追随特斯拉[3] 特斯拉端到端自动驾驶技术框架 - 特斯拉转向单一、大型的端到端神经网络,直接输入像素和传感器数据,输出控制动作,不再有显式感知模块[4] - 转向端到端的原因包括:人类价值观编码困难、传统模块接口信息丢失、易于扩展处理长尾问题、实现同构计算与确定性延迟[5] - 面临三大挑战:维度灾难(30秒窗口达20亿token)、可解释性与安全保证、评估难度[6][7] - 解决方案包括:利用车队数据挖掘高价值场景、通过辅助输出(如3D占用、自然语言决策)实现可解释性、使用神经网络闭环模拟器进行评估[7][8][9][10] 理想与特斯拉技术路线的对比与创新时序 - Ashok在ICCV 2025提及的系统2自然语言应用、高斯溅射生成仿真、仿真评估等概念均为理想率先公开[13][16] - 理想在2024年1月2日发表的论文已包含3D高斯表征相关内容,早于特斯拉ICCV 2025的公开介绍[18][20] - 特斯拉架构图中明确标注系统2和LLM应用,进一步验证理想在相关技术方向的先行性[22] - Ashok此次演讲未提出突破性概念,因此不能认为特斯拉再次引领行业研究方向调整[13]