算力主权的核心概念 - 人工智能全球竞赛的核心正从算法和数据转向其物理基础——算力,前沿AI模型所需计算资源约每六个月翻一番,对专业计算基础设施的控制权成为政府和行业讨论的核心[2] - “算力主权”是一个复杂议题,需在三个层面解构:AI计算资源是否位于本国领土内、拥有AI数据中心的公司归属哪国国籍、为数据中心提供动力的AI加速器来自哪个国家供应商[2] - 全球算力地图呈现极度不均衡格局,一个国家是否拥有“算力主权”完全取决于分析层面,这对全球政策制定者、科技巨头和国际关系学者具有深远影响,揭示了技术自主追求中的权衡、战略依赖和地缘政治断层线[3] 领土主权层面的算力分布 - 在领土主权层面,全球AI算力资源高度集中,九大云服务商布局的225个云区域中仅132个配备AI加速器,这些关键资源仅分布在33个国家,绝大多数国家处于“计算穷国”地位[4] - 高端“训练相关”算力分布更为集中,全球仅24个国家拥有此类资源,仅占联合国成员国约12%,美国(26个AI云区域)和中国(22个AI云区域)数量领先,欧盟27国总共拥有27个AI云区域[4] - 追求领土主权存在核心权衡:政府需在“确保关键资源供应安全”的战略利益与“消耗宝贵能源、水和土地资源”的巨大本地成本间做出选择,对缺乏竞争优势的国家而言,盲目投资国家数据中心产业可能不划算[4][5] 供应商国籍层面的主权策略 - 在供应商国籍层面存在“分层管辖权”困境,外国云巨头在东道国运营数据中心时需同时遵守东道国和母国法律,这削弱了东道国的监管排他权,引发主权焦虑[6] - 全球云市场由六大“超大规模”供应商主导(美国AWS、谷歌、微软和中国阿里、华为、腾讯),迫使大多数国家在战略上做出选择[7] - 国家策略可分为“结盟”和“对冲”两种:31个拥有外国AI算力国家中18个采取“结盟”策略(如澳大利亚、日本、以色列完全依赖美国供应商),12个国家采取“对冲”策略(如新加坡同时拥有美国和中国的云区域)[8][9] 芯片供应商层面的终极依赖 - 在AI加速器(芯片)供应商层面呈现最极端市场集中,美国芯片设计公司NVIDIA主导全球AI加速器市场80%至95%份额,132个配备AI加速器云区域中95.5%依赖美国设计的加速器[10] - 这种“加速器的枷锁”使得前两个层面主权努力显得苍白,只有美国和中国在境内部署的AI数据中心使用了本国设计的芯片[11] - 实现“加速器主权”最为困难昂贵,欧盟《芯片法案》计划投资430亿欧元用于本土半导体开发,中国在美国出口管制倒逼下正投入巨资发展自主AI加速器能力[12] 多层权衡的总体结论 - “算力主权”不是简单目标而是复杂多层决策框架,充满艰难权衡,一个国家可能在一个层面主权而在另一个层面深度依赖[13] - 全球算力分布存在惊人不对称:仅少数国家拥有AI算力,其中大多数依赖外国云服务商,而几乎所有国家都依赖美国芯片技术[13] - 未来全球算力地图演变将取决于地缘政治格局、超大规模供应商商业决策和各国产业政策成败,控制计算、网络和芯片等关键基础设施节点将掌握全球治理和经济创新话语权[13]
牛津大学:2025AI计算主权的全球争夺战研究报告