Workflow
理想ICCV'25分享了世界模型:从数据闭环到训练闭环

公司智能驾驶技术发展路线 - 公司智能驾驶发展经历了从规则时代的轻图和无图方案 到基于人工智能的端到端+视觉语言模型快慢双系统和视觉语言自动驾驶方案 导航模块在四个方案中均为重点 [6] - 公司端到端量产版本的MPI已达到220+ 相比2024年7月底的版本提升了约19倍 [13] 数据闭环流程与规模 - 完整的数据闭环流程包括:影子模式验证、数据触发回传至云端、数据挖掘、有效样本自动标注、生成训练集训练模型、模型下发验证性能 [9] - 数据回传过程可在一分钟内完成 [10] - 公司已积累15亿公里的驾驶数据 通过200多个触发器生产时长15至45秒的片段数据 [11] 自动驾驶下半场:从数据闭环到训练闭环 - 行业观点认为自动驾驶进入下半场 核心玩法从数据闭环转向训练闭环 [18][21] - L4级训练循环的核心技术栈为视觉语言自动驾驶+强化学习+世界模型 轨迹由视觉语言自动驾驶的扩散模型和基于世界模型的强化学习共同优化 强化学习包括RLHF、RLVR和RLAIF [23] - 训练闭环关键技术栈包括区域级别仿真、合成数据和强化学习 [24] 训练闭环关键技术细节 - 仿真依赖场景重建技术 包括视觉/激光雷达重建、区域重建、多趟重建、场景编辑和风格迁移 [26] - 合成数据依赖多模态生成技术 包括视频/点云生成和神经渲染 [26] - 强化学习依赖智能体、3D资产以及评测与奖励模型 [26] - 可交互的智能体是训练闭环的关键挑战 [40] - 系统能力是世界模型增强引擎的关键 包括仿真环境、3D资产构建多样化场景、交互式行为建模、奖励模型反馈泛化能力及GPU工程加速推理 [41] 公司在重建与生成领域的进展 - 公司在重建领域已有两篇顶会论文成果 [28] - 公司技术方案从重建发展到生成 其中Feedforward 3DGS方案无需点云初始化 可直接由视觉输入得到结果 [29] - 公司在联合重建与生成领域有一篇顶会论文 [32] - 公司在生成领域有三篇顶会论文成果 [34] - 生成技术的应用包括场景编辑、场景迁移和场景生成 [36]