文章核心观点 文章通过解读OpenAI前首席科学家Ilya Sutskever的访谈,阐述了其对人工智能发展现状、未来方向及实现路径的核心观点。核心观点认为,AI发展正从依赖算力规模扩张的“规模化时代”转向依赖算法创新的“研究时代”,而实现安全、高级的通用人工智能(AGI)的关键在于探索新的学习机制(如价值函数)、理解并模拟人类智能的本质(如情绪、同理心),并保持专注的研究品味[10][17][22][24]。 关于时代的转向 - AI发展历程分为三个阶段:2012-2020年为“研究时代”,尝试不同AI想法;2020-2025年为“规模化时代”,自GPT-3后算力规模扩张成为共识;2025年开始,因数据有限,预训练的规模定律失效,行业重新回归“研究时代”,竞争焦点将从比拼GPU数量转向寻找新算法[17] SSI的规划 - Ilya创立的SSI公司采取“Straight shot”策略,不发布中间产品,直接研发超级智能,以避免市场竞争带来的妥协[13] - 其对超级智能的定义更接近“超级学习者”,发布时类似“天才少年”,需在社会中学习进步,预计出现窗口期为5到20年[13] - SSI融资30亿美元,虽比大厂少,但资金将全部投入纯粹研究实验,在研发层面具备竞争力[13] 关于Taste(研究品味) - Ilya分享了判断研究方向的三个黄金标准:1) 生物学上的合理性(如神经元连接结构);2) 方案的简洁与优雅美感;3) 基于第一性原理的“自上而下”信念,即在数据不符预期时能坚持理论,相信是代码问题,这是顶级与平庸研究者的关键区别[18] 关于Value Function(价值函数) - 预训练红利已尽,下一步重点是价值函数,旨在让AI具备人类式的直觉性中途判断能力,而非仅能在任务完成后评估对错,此举将大幅提升AI学习效率[16][19] - Ilya坚信只要信号存在,深度学习就能学到价值函数,尽管路径复杂[19] 关于RL(强化学习) - Ilya提出反直觉观点:当前的RL方法可能是在“弄傻”模型,因为它可能“撤销预训练的概念印记”,迫使AI讨好单一人类指标,牺牲了其原本宽广的通用智力,类似应试教育[20] - 行业现状发生重要转向:根据传闻,目前花在RL上的算力已超过预训练,因为RL需要长推演,算力消耗大但有效学习信号少[20] 情绪与同理心的作用 - 情绪被视为人类高效的“压缩算法”和终极的价值函数,能帮助快速决策。当前AI缺乏这种内在指引,导致其可能逻辑正确但缺乏常识[22] - 同理心是理解世界的最佳捷径。从计算效率看,复用理解“自我”的神经回路去模拟“他人”是最省资源的建模方式,因此同理心可能作为智能提升的涌现属性出现[24] - 将“关爱有感知生命”硬编码进超级智能是对齐问题的潜在解法。人类进化能将对“社会地位”等抽象概念的追求编码进大脑,这为将高级目标对齐给AI提供了可能性[24][25] 关于语言对思维的影响 - 行业术语会反向塑造研究方向,例如“AGI”一词可能导致过度追求全能基础模型而忽视动态学习能力;“Scaling”一词则曾让行业过度聚焦模型规模而停止探索其他可能性[27] 未来的市场格局 - 未来超级智能领域不会由一家公司垄断,竞争将促使专业化分工。在特定领域投入巨大算力形成高壁垒后,其他AI从头学习将不划算,从而形成类似自然界的生态平衡,这对垂直领域创业者是鼓励[28]
前OpenAI首席科学家Ilya:情绪是终极Value Function
首席商业评论·2025-12-12 19:21