行业核心转变 - 人工智能驱动的机器人行业正经历两大关键转变:一是应用场景从工厂车间向家庭、城市、太空等非结构化环境“逃逸”,二是训练重点从传统的认知能力(“大脑”)转向物理操控能力(“身体”)[1] - 这一转变将驱动边缘算力需求爆发,并可能重塑全球算力基础设施格局[1] 机器人应用场景演变 - 传统工业机器人被局限于工厂的“结构化牢笼”,任务单一、环境可控且无需感知与学习能力[3] - AI赋能的新一代机器人开始进入家庭、农场、城市街道、深海及太空等复杂现实世界,执行如自动驾驶导航、家庭服务、复杂地形巡检等任务[3] 物理操控的技术挑战与瓶颈 - 当前行业瓶颈已从优化“大脑”(如通用模型)转向训练“身体”(物理动作执行),核心矛盾在于人类本能的基础技能(如行走、抓取)对AI而言极其复杂(Moravec悖论)[8] - 机器人执行如“抓取冰箱中的瓶子”等简单人类动作,涉及手指位置、身体平衡、握力控制及环境变量(如湿度)等多重挑战,需要实时感知、动态决策与精细动作控制能力[6][7] - 与大语言模型不同,机器人模型需要大量真实世界的物理操作数据进行训练,这使得数据收集和模型训练变得更加复杂且昂贵[9] 训练数据收集方式 - 特斯拉、英伟达、谷歌等科技巨头正通过三种主要方式收集训练数据[11] - 远程操作:人类通过动作捕捉控制机器人模仿行为,但该方法耗时且扩展性差[13] - 模拟训练:通过数字孪生在虚拟环境中无限复现复杂场景(如极端天气),结合强化学习优化动作,游戏引擎公司(如Unreal Engine、Unity)及英伟达Omniverse平台深度参与[15] - 视频学习:从人类行为视频(如YouTube)中提取动作模式训练模型,无需物理交互,谷歌DeepMind的Genie 3、Meta的V-JEPA 2等“世界模型”采用此思路[15] 边缘算力需求与趋势 - 机器人进入非结构化环境后,云端中心化计算的延迟问题凸显,边缘算力成为刚需[18] - 专用边缘芯片普及:以英伟达Jetson Thor为代表,作为边缘实时推理设备,每套件价格约3500美元,其核心优势在于低功耗下实现高算力,满足机器人对实时性的要求[19] - 分布式推理网络:特斯拉提出“机器人即算力节点”构想,若全球部署1亿台具备2500 TFLOPS算力的机器人,在50%利用率下可提供125000 ExaFLOPS算力,相当于700万颗英伟达B200 GPU(单颗18 PetaFLOPS)[22] 市场规模与算力需求预测 - 到2050年,全球将售出14亿台机器人[2] - 到2030年,全球机器人边缘计算需求将大幅增长,各类机器人形态都将贡献显著算力需求[25] - 到2050年,机器人将推动边缘AI算力需求达到数百万个B200芯片当量[2][25]
大摩重磅机器人年鉴(二):机器人"逃离工厂",训练重点从“大脑”转向“身体”,边缘算力有望爆发
华尔街见闻·2025-12-16 12:49