文章核心观点 - 文章记录了Meta前AI科学家田渊栋被裁后的职业转变、2025年的核心研究方向以及对AI驱动下社会生产力与个人价值重构的深刻思考[1][2][3] - 核心观点认为,AI能力的飞速发展正在重塑社会结构,个人价值评估标准从自身劳动产出转变为“人加AI”能否超越AI本身,这导致职业价值出现类似“费米能级”的两极分化[20][23][27] - 在“遍地神灯”(强大AI智能体)的时代,真正稀缺的是人类的原创愿望、独立思考能力以及将宏大目标转化为现实的能力,这决定了个人能否保持在“费米能级”之上[28][29][33] 关于被裁与职业转变 - 田渊栋在2025年1月底被要求加入“救火”Llama 4项目,尽管团队在强化学习训练的核心问题上进行了多项探索,但项目结束后他仍被Meta裁员[4] - 被裁后收到了大量工作邀约,最终选择成为一家初创公司的联合创始人,并于2024年12月上任[6] 2025年主要研究方向 - 大模型推理:其团队2024年末公开的连续隐空间推理(coconut)工作在2025年引发研究热潮,团队后续发表了理论分析文章《Reasoning by Superposition》(NeurIPS'25)[7] - 提高推理效率:通过Token Assorted(ICLR'25)工作混合离散token与文本token以减少推理代价并提升性能;通过DeepConf提前终止低置信度推理路径以减少token使用;通过ThreadWeaver制造并行推理思维链以加速[8] - 打开模型黑箱(可解释性):重点研究Grokking(顿悟)现象,旨在理解模型从记忆到泛化的突变过程,近期在《Provable Scaling Laws》文章中取得突破[9] - 理解RL与SFT差异:研究指出,监督微调(SFT)会导致权重主分量被大幅修改,引发灾难性遗忘,而强化学习(RL)使用on-policy数据训练,主要改变权重次要分量,从而避免该问题[10] AI驱动下的社会与生产力变革 - 生产力重构:带思维链的推理模型成功让强化学习重回主流,并推动了AI4Coding及AI Agent发展,使大模型得以大规模落地并大幅提高生产力[15] - 工作模式转变:AI可以24小时不间断工作,人类的工作重心转变为确保为AI提供足够的工作量(如用完每日剩余token数)并减少介入,让AI自主长时间工作[15][16] - 个人价值重估:个人价值评估标准从“本人产出的劳动数量及质量”转变为“人加AI的产出是否大于AI本身”,导致投入-回报曲线变为类似soft-thresholding的曲线,存在一个能力阈值(费米能级)[20][23] - 社会两极分化:低于“费米能级”的智能体(人+AI)供给过剩,价值极低;高于该水准的智能体则数量稀少且价值高昂,形成“一骑当千”的效应[25][27] - “费米能级”上升:这条能力水准线会随时间上移,其上移速度取决于能获取到的、比它更强的数据量,若训练过程有突破(如新合成数据手段),进展可能加速[27] 遍地神灯时代的独立思考与个人策略 - 新时代的稀缺品:在AI能力充沛的“遍地神灯”时代,真正稀缺的是人类的“愿望”本身以及将愿望化为现实的坚持[28][29] - 独立思考的丧失风险:大模型提供廉价思考结果,可能导致人们逐渐丧失原创能力,思想被生成式内容和推荐系统同化,成为精神上的“懒人”[29] - 保持独立的战术:需要不断审视AI的答案、挑毛病并发现其无法解决的新问题;未来新价值来源于新数据发现、对问题的新理解以及新的可行创新路径[30] - 保持独立的战略:每个人都需要从“员工”角色向“老板”或“创始人”角色转变,核心在于拥有坚定的“目标感”,并动用一切手段(包括大模型)去达成远大目标[31] - 对教育的启示:应鼓励孩子树立宏大的志向(如在土卫六开演唱会),这将是他们保持主动思考、始终屹立于“费米能级”之上的根本源泉[33]
田渊栋2025年终总结:救火Llama4但被裁,现任神秘初创公司联创