文章核心观点 - 清华大学主办的AGI-Next前沿峰会汇集了中国AI领域的核心人物,包括智谱AI唐杰、Kimi杨植麟、阿里林俊旸和腾讯姚顺雨,共同探讨了通用人工智能(AGI)的当前进展与未来范式转变 [2][4][6] - 行业共识认为,以Chat为代表的对话模型时代已基本结束,AI发展的下一步核心是“从对话走向做事”,即让AI具备执行具体任务的能力,特别是通过智能体(Agent)和编码(Coding)来提升生产力 [6][12] - 中国在开源大模型领域已形成显著影响力,但在整体AI赛道上实现反超仍面临巨大挑战,需要持续在技术创新、新范式探索上投入 [6][19] 大模型发展轨迹与能力演进 - 大模型智能水平发展轨迹类似人类成长:2020年前后解决简单问答,2021-2022年进入数学计算和基础推理,2023-2024年走向复杂推理并能处理研究生层级问题,在真实世界编程任务中表现出可用性 [9] - 模型能力正从知识记忆走向复杂推理,并开始通过人类终极测试(HLE)等极高难度基准的检验,2025年模型整体能力仍在快速提升 [9][10][11] - 代码能力是典型进步领域:从2021年模型写十个程序才能跑通一个,发展到如今在复杂任务中往往可以一次性跑通,能实质性地辅助高级工程师 [12] 下一代范式:从Chat到Agent - DeepSeek的出现标志着Chat这一代问题基本被解决,优化空间正在迅速收敛,行业需要思考新范式 [12] - 新范式的核心是让AI完成具体事情,主要思路有两条:一是强化思考(Thinking)能力,结合编码与智能体;二是让模型更深度地与环境交互 [12] - 智谱AI优先选择了强化思考能力并引入编码场景的路径,通过整合编码、智能体和推理能力,并在真实环境中通过可验证强化学习(RLVR)来提升模型稳定性 [13][14] - 智能体(Agent)的基础能力可理解为编程,但更复杂的任务涉及几十步、上百步的异步超长链路,需要AI具备设备使用层面的能力 [15][16] 技术挑战与解决方案 - 可验证强化学习(RLVR)的挑战在于可验证场景(如数学、编程)正逐渐耗尽,需探索如何进入半自动或不可验证的任务空间 [11] - 训练体系挑战:强化学习任务种类多样,序列长度和时间尺度差异大,智谱AI开发了全异步强化学习训练框架以实现不同任务的并行运行与动态收敛 [15] - 冷启动问题:许多应用场景几乎没有现成数据,解决方案是采用API与GUI操作的混合方案,在真实环境中采集交互数据并进行全异步强化学习 [16] - 能力平衡问题:在9B规模模型上引入大量智能体数据后,其智能体能力显著增强,但部分通用语言和推理能力会下降,未来需解决在强化智能体能力的同时避免损害通用能力的问题 [18] 未来突破方向与行业思考 - 多模态:建立类似人类视觉、听觉、触觉的原生多模态“感统”机制是关键方向 [21] - 记忆与持续学习:如何将个体记忆扩展到群体级、文明级的记忆结构,并纳入模型可持续学习框架 [22] - 反思与自我认知能力:学界存在分歧,但值得探索,可能参考人类双系统认知(系统一与系统二)并引入“自学习”模块 [23] - 继续Scaling的三个维度:Scaling数据与模型规模以提升智能上限;Scaling推理以延长思考时间;Scaling自学习环境以增加与外界交互的机会 [24] - 需要寻找超越单纯Scaling的新范式,让机器能独立定义奖励函数、交互方法甚至训练任务来进行Scaling [24] 智谱AI(唐杰)的实践与展望 - 公司发展源于2019年在清华的成果转化,长期专注于两件事:早年做AMiner以及当前的大模型 [8] - 2025年是GLM模型的开源年,从1月到12月陆续开源了多条模型线,涵盖语言模型、智能体及多模态模型 [19] - 在Artificial Analysis榜单上,前五名中的蓝色模型几乎全部来自中国,显示中国在开源大模型领域的影响力 [19] - 2026年及以后的三个重点方向:继续Scaling但需区分已知路径与探索未知新范式;推进全新模型架构探索以解决超长上下文、高效知识压缩等问题;将多模态感统作为重点方向,以执行长链路、长时效的真实任务 [27] - 判断2025年很可能成为AI for Science的重要突破年份 [28] Kimi(杨植麟)的技术路径与世界观 - 大模型发展的第一性原理是Scaling Law,即把能源转化为智能,拥有更多算力、数据、参数可使模型损失(loss)线性下降 [30][32] - Transformer成为主流架构的核心原因是在Scaling Law上表现优于LSTM,能用更少的FLOPs或参数获得更好的Scaling效果 [33] - 优化围绕两个核心维度:Token效率(用尽可能少的Token获得相同效果)和长上下文(Long Context)能力,两者结合可实现优秀的智能体智能 [35][36] - 公司采用了MUON优化器(一种二阶优化器),相比传统Adam优化器能带来2倍的Token效率提升,相当于用50%的数据达到相同的测试损失,或用相同数据获得更低的损失 [36][38] - 最新研究的kimi Linear架构是一种新的线性注意力机制,旨在长程任务上效果优于全注意力机制,同时端到端速度有显著优势(如100万上下文下快6到10倍) [44][45] - 做模型的本质是在创造一种世界观,追求智能的“品位”(Taste),智能具有不可交换性,不同领域产生的智能不同,因此模型不会趋同,存在指数级的Taste空间 [47] 阿里千问(林俊旸)的进展与多模态探索 - 公司目标从通用模型(Generalist model)转向通用智能体(Generalist Agent),强调AI应像人一样自主使用工具 [53] - 2025年文本模型(Qwen3系列)的主要特点是总体能力提升,特别是推理能力增强,并支持119种语言及方言 [58][59] - 在编码(Coding)能力上,重点从解竞赛题转向软件工程,关注在真实环境中完成多轮交互的复杂任务,在SWE-bench等基准上取得高分(如70分) [61][62][64] - 坚信智能体天然应该是多模态的,致力于构建统一理解与生成的多模态基础模型 [55][56] - 在视觉语言模型上取得进展,使模型在拥有视觉理解能力的同时,语言智力不降低,与其235B纯文本模型能力持平 [65] - 在图像生成方面,从2025年8月到12月,生成图像的真实感显著提升,从“AI感重”到“接近真人”,并具备准确的图像编辑能力 [68][70] - 在语音模型上,开发了能听能说的Omni模型,其文本能力可达Qwen2.5水平,语音能力对标Qwen2.5 Pro水平 [71] - 未来方向包括构建全模态模型(理解并生成文本、视觉、音频),以及利用环境反馈进行多轮强化学习以实现长视野推理 [72][73][74] 行业路线分化观察 - 观察到to C和to B市场发生明显分化:对to C而言,大部分人大部分时候不需要用到那么强的智能,更多是搜索引擎的加强版;对to B而言,智能越高代表生产力越高,价值越大,用户愿意为最强模型支付溢价 [82][83] - 观察到垂直整合与模型应用分层出现分化:在to C应用上,模型与产品强耦合的垂直整合依然成立;但在to B场景,趋势似乎是模型越来越强,同时有许多应用层产品利用这些模型服务于不同生产力环节 [84] - 大公司做编码智能体的一个潜在优势是能利用自身庞大的内部应用场景和真实世界数据来改进模型,这不同于依赖有限标注商的创业公司 [85][86] - 中美市场存在差异:在美国,编码消耗量非常大;而在中国,这一现象尚不明显 [87] - 学术界与工业界存在分化:工业界领头狂奔,学术界需要跟上,解决工业界未及深入的理论问题,如智能上界、资源分配、持续学习中的噪音清理(类似人类睡眠机制)等 [88][89] - 对话模型替代搜索的战役在DeepSeek出现后已基本结束,行业需要寻找下一战,即让AI真正做事 [91] 关于自主学习(Self-Learning) - 自主学习是当前热门共识,但每个人对其定义和看法不同,它更关乎在何种场景下基于何种奖励函数执行何种任务,而非单一方法论 [93] - 自主学习已在多种场景下发生:例如ChatGPT利用用户数据弥合聊天风格,Claude编写自身项目95%的代码以帮助自己变得更好 [94] - 当前AI系统通常由模型和如何使用模型的代码库两部分组成,自主学习正在这些特定场景下渐变式发生,2025年已能看到信号,例如Cursor每几个小时就用最新用户数据学习 [94][95]
AI圈四杰齐聚中关村,都聊了啥?
首席商业评论·2026-01-11 12:57